ON COMMON FIXED POINT THEOREMS FOR SEMI-COMPATIBLE AND OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS IN MENERG SPACE

Arihant Jain\(^1\) & Basant Chaudhary\(^2\)

\(^1\)Department of Applied Mathematics, Shri Guru Sandipani Institute of Technology and Science, Ujjain (M.P.) 456550, India
Email:arihant2412@gmail.com

\(^2\)Department of Applied Mathematics, Malwa Institute of Technology, Indore (M.P.), India
Email: chaudharybasant60@gmail.com

ABSTRACT

In this paper, the concept of semi-compatibility and occasionally weak compatibility in Menger space has been applied to prove a common fixed point theorem for six self maps. Our result generalizes and extends the result of Pathak and Verma [9].

Keywords: Probabilistic metric space, Menger space, common fixed point, compatible maps, semi-compatible maps, weak compatibility.

AMS Subject Classification: Primary 47H10, Secondary 54H25.

1. **INTRODUCTION**

There have been a number of generalizations of metric space. One such generalization is Menger space initiated by Menger [7]. It is a probabilistic generalization in which we assign to any two points \(x\) and \(y\), a distribution function \(F_{x,y}\). Schweizer and Sklar [11] studied this concept and gave some fundamental results on this space. Sehgal and Bharucha-Reid [12] obtained a generalization of Banach Contraction Principle on a complete Menger space which is a milestone in developing fixed-point theory in Menger space.

Recently, Jungck and Rhoades [6] termed a pair of self maps to be coincidentally commuting or equivalently weakly compatible if they commute at their coincidence points. Sessa [13] initiated the tradition of improving commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces. Jungck [5] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger space has been introduced by Mishra [8]. In the sequel, Pathak and Verma [9] proved a common fixed point theorem in Menger space using compatibility and weak compatibility. Using the concept of compatible mappings of type (A), Jain et. al. [2, 3] proved some interesting fixed point theorems in Menger space. Afterwards, Jain et. al. [4] proved the fixed point theorem using the concept of weak compatible maps in Menger space.

In this paper a fixed point theorem for six self maps has been proved using the concept of semi-compatible maps and occasionally weak compatibility which turns out to be a material generalization of the result of Pathak and Verma [9].

2. **Preliminaries.**

Definition 2.1. A mapping \(F : \mathbb{R} \to \mathbb{R}^+\) is called a *distribution* if it is non-decreasing left continuous with\
\[
\inf \{ F(t) \mid t \in \mathbb{R} \} = 0 \quad \text{and} \quad \sup \{ F(t) \mid t \in \mathbb{R} \} = 1.
\]

We shall denote by \(L\) the set of all distribution functions while \(H\) will always denote the specific distribution function defined by\
\[
H(t) = \begin{cases}
0, & t \leq 0 \\
1, & t > 0
\end{cases}
\]

Definition 2.2. [8] A mapping \(t : [0, 1] \times [0, 1] \to [0, 1]\) is called a *\(t\)-norm* if it satisfies the following conditions:

\[
\begin{align*}
(t-1) & \quad t(a, 1) = a, \quad t(0, 0) = 0; \\
(t-2) & \quad t(a, b) = t(b, a); \\
(t-3) & \quad t(c, d) \geq t(a, b); \quad \text{for } c \geq a, d \geq b.
\end{align*}
\]
(t-4) \[t(t(a, b), c) = t(a, t(b, c)) \] for all \(a, b, c, d \in [0, 1] \).

Definition 2.3. [8] A probabilistic metric space (PM-space) is an ordered pair \((X, F)\) consisting of a non empty set \(X\) and a function \(F : X \times X \to L\), where \(L\) is the collection of all distribution functions and the value of \(F\) at \((u, v) \in X \times X\) is represented by \(F_{u,v}\). The function \(F_{u,v}\) assumed to satisfy the following conditions:

1. **(PM-1)** \(F_{u,v}(x) = 1\), for all \(x > 0\), if and only if \(u = v\);
2. **(PM-2)** \(F_{u,v}(0) = 0\);
3. **(PM-3)** \(F_{u,v} = F_{v,u}\);
4. **(PM-4)** If \(F_{u,v}(x) = 1\) and \(F_{v,w}(y) = 1\) then \(F_{u,w}(x + y) = 1\), for all \(u, v, w \in X\) and \(x, y > 0\).

Definition 2.4. [8] A Menger space is a triplet \((X, F, t)\) where \((X, F)\) is a PM-space and \(t\) is a \(t\)-norm such that the inequality

\[\text{(PM-5)} \quad F_{u,w}(x + y) \geq t\{F_{u,v}(x), F_{v,w}(y)\}, \quad \text{for all} \quad u, v, w \in X, x, y \geq 0. \]

Proposition 2.1. [8] If \((X, d)\) is a metric space then the metric \(d\) induces mappings \(F : X \times X \to L\), defined by

\[F_{p,q}(x) = H(x - d(p, q)), \quad p, q \in X, \]

where \(H(k) = 0\), for \(k \leq 0\) and \(H(k) = 1\), for \(k > 0\). Further if, \(t : [0,1] \times [0,1] \to [0,1]\) is defined by \(t(a, b) = \min \{a, b\}\). Then \((X, F, t)\) is a Menger space. It is complete if \((X, d)\) is complete.

Definition 2.5. [8] A sequence \(\{x_n\}\) in a Menger space \((X, F, t)\) is said to be convergent and converges to a point \(x\) in \(X\) if and only if for each \(\varepsilon > 0\) and \(\lambda > 0\), there is an integer \(M(\varepsilon, \lambda)\) such that \(F_{x_n, x}(\varepsilon) > 1 - \lambda\), for all \(n \geq M(\varepsilon, \lambda)\).

Further the sequence \(\{x_n\}\) is said to be Cauchy sequence if for \(\varepsilon > 0\) and \(\lambda > 0\), there is an integer \(M(\varepsilon, \lambda)\) such that \(F_{x_n, x_m}(\varepsilon) > 1 - \lambda\), for all \(m, n \geq M(\varepsilon, \lambda)\). A Menger PM-space \((X, F, t)\) is said to be complete if every Cauchy sequence in \(X\) converges to a point in \(X\).

Definition 2.6. [9] Self mappings \(A\) and \(S\) of a Menger space \((X, F, t)\) are said to be weak compatible if they commute at their coincidence points i.e. \(Ax = Sx\) for \(x \in X\) implies \(ASx = SAx\).

Definition 2.7. [9] Self mappings \(A\) and \(S\) of a Menger space \((X, F, t)\) are said to be compatible if \(F_{ASx_n, SAx_n}(x) \to 1\) for all \(x > 0\), whenever \(\{x_n\}\) is a sequence in \(X\) such that \(Ax_n, Sx_n \to u\) for some \(u \in X\), as \(n \to \infty\).

Definition 2.8. [14] Self mappings \(A\) and \(S\) of a Menger space \((X, F, t)\) are said to be semi-compatible if \(F_{ASx_n, Sx_n}(x) \to 1\) for all \(x > 0\), whenever \(\{x_n\}\) is a sequence in \(X\) such that \(Ax_n, Sx_n \to u\), for some \(u \in X\), as \(n \to \infty\).

Definition 2.9. Self maps \(A\) and \(S\) of a N.A. Menger PM-space \((X, F, t)\) are said to be occasionally weakly compatible (owc) if and only if there is a point \(x\) in \(X\) which is coincidence point of \(A\) and \(S\) at which \(A\) and \(S\) commute.

Example 2.1. Let \((X, F, t)\) be the Menger PM-space, where \(X = [0, 4]\) Define \(F\) by

\[F_{x, y}(t) = \begin{cases} \frac{t}{t + |x - y|} & \text{if } t > 0, \\ 0, & \text{if } t = 0 \end{cases} \]

Define \(A, S : X \to X\) by

\[Ax = 4x \text{ and } Sx = x^2 \text{ for all } x \in X \text{ then } Ax = Sx \text{ for } x = 0 \text{ and } 4. \]

But \(AS(0) = SA(0)\) and \(AS(4) \neq SA(4)\).
Thus, S and T are occasionally weakly compatible mappings but not weakly compatible.

Remark 2.1. In view of above example, it follows that the concept of occasionally weakly compatible is more general than that of weak compatibility.

Lemma 2.1. [9] Let \((X, F, \ast)\) be a Menger space with t-norm \(*\) such that the family \(\{*_n(x)\}_{n \in \mathbb{N}}\) is equicontinuous at \(x = 1\) and let \(E\) denote the family of all functions \(\phi: \mathbb{R}^+ \to \mathbb{R}^+\) such that \(\phi\) is non-decreasing with \(\lim_{n \to \infty} \phi^n(t) = +\infty, \quad \forall \ t > 0\). If \(\{y_n\}_{n \in \mathbb{N}}\) is a sequence in \(X\) satisfying the condition

\[
F_{y_{n+1}}(t) \geq F_{y_{n+1}, y_n}(\phi(t)),
\]

for all \(t > 0\) and \(\alpha \in [-1, 0]\), then \(\{y_n\}_{n \in \mathbb{N}}\) is a Cauchy sequence in \(X\).

3. MAIN RESULT

Theorem 3.1. Let \(A, B, S, T, P\) and \(Q\) be self maps of a complete Menger space \((X, F, \ast)\) with \(* = \min\) satisfying:

1. \((P, AB)\) is semi-compatible and \((Q, ST)\) is occasionally weak compatible;
2. \(\alpha > 0\) for all \(x, y \in X, t > 0\) and \(\phi \in E\).

Then \(A, B, S, T, P\) and \(Q\) have a unique common fixed point in \(X\).

Proof. Suppose \(x_0 \in X\). From condition (3.1.1) \(\exists \ x_1, x_2 \in X\) such that

\[P_{x_0} = ST_{x_1} \quad \text{and} \quad Q_{x_1} = AB_{x_2}. \]

Inductively, we can construct sequences \(\{x_n\}\) and \(\{y_n\}\) in \(X\) such that

\[y_{2n} = P_{x_{2n}} = ST_{x_{2n+1}} \quad \text{and} \quad y_{2n+1} = Q_{x_{2n+1}} = AB_{x_{2n+2}} \]

for \(n = 0, 1, 2, \ldots\).

Step 1. Let us show that \(F_{y_{n+2}}(t) \geq F_{y_{n+1}, y_n}(\phi(t)).

For, putting \(x_{2n+2}\) for \(x\) and \(x_{2n+1}\) for \(y\) in (3.1.5) and then on simplification, we have

\[[1 + \alpha F_{ABx_{2n+2}, STx_{2n+1}}(t)] \ast F_{Px_{2n+2}, Qx_{2n+1}}(t) \]

\[
\geq \alpha \min\{F_{Px_{2n+2}, ABx_{2n+2}}(t), F_{Qx_{2n+1}, STx_{2n+1}}(t), F_{Px_{2n+2}, STx_{2n+1}}(2t) \}
\]

\[
\geq \alpha \min\{F_{y_{2n+2}, y_{2n+1}}(t), F_{y_{2n+1}, y_{2n}}(t), F_{y_{2n+2}, y_{2n}}(2t) \}
\]

\[
\geq \alpha \min\{F_{y_{2n+2}, y_{2n+1}}(t), F_{y_{2n+1}, y_{2n}}(t), F_{y_{2n+2}, y_{2n}}(2t) \}
\]

\[
\geq \alpha \min\{F_{y_{2n+2}, y_{2n+1}}(t), F_{y_{2n+1}, y_{2n}}(t), F_{y_{2n+2}, y_{2n}}(2t) \}
\]

664
Case I. Suppose P is continuous.

As P is continuous and (P, AB) is semi-compatible, we get

$$PABx_{2n+2} \rightarrow Pz \quad \text{and} \quad PABx_{2n+2} \rightarrow ABz.$$ \hfill (3.1.7)

Since the limit in Menger space is unique, we get

$$Pz = ABz.$$ \hfill (3.1.8)

Step II. We prove $Pz = z$. Put $x = z, y = x_{2n+1}$ in (3.1.5) and let $Pz \neq z$. Then

$$[1 + \alpha F_{ABz}(t)] \cdot F_{Pz}(t) \geq \alpha \min\{F_{Pz}(t), F_{ABz}(t), F_{STx_{2n+1}}(t), F_{STx_{2n+1}}(t) \} + F_{ABz}(t).$$

Step III. We prove $Pz = z$. Put $x = z, y = x_{2n+1}$ in (3.1.5) and let $Pz \neq z$. Then

$$[1 + \alpha F_{ABz}(t)] \cdot F_{Pz}(t) \geq \alpha \min\{F_{Pz}(t), F_{ABz}(t), F_{STx_{2n+1}}(t), F_{STx_{2n+1}}(t) \} + F_{ABz}(t).$$
Letting \(n \to \infty\) and using (3.1.6) and (3.1.8), we get
\[
[1 + \alpha Pz, z(t)] * F_{Pz}, z(t)
\geq \alpha \min\{F_{Pz}, Pz(t) * Fz, z(t), F_{Pz}, z(2t) * Fz, Pz(2t)\} + F_{Pz}, z(\phi(t)) * F_{Pz}, Pz(\phi(t))
\]
\[
* F_{Pz}, z(\phi(t)) * F_{Pz}, z(2\phi(t)) * F_{Pz}, Pz(2\phi(t))
\]
\[
F_{Pz}, z(t) + \alpha F_{Pz}, z(t) * F_{Pz}, z(t)
\geq \alpha \min\{1 \cdot 1, F_{Pz}, z(2t) \cdot F_{Pz}, z(2t)\}
\]
\[
* F_{Pz}, z(\phi(t)) * F_{Pz}, z(2\phi(t))
\]
which is a contradiction and hence, \(Pz = z\) and so \(z = Pz = ABz\).

Step III. Put \(x = Bz\) and \(y = x_{2n+1}\) in (3.1.5), we get
\[
[1 + \alpha F_{ABBz}, STx_{2n+1}(t)] * F_{Pbz}, Qx_{2n+1}(t)
\geq \alpha \min\{F_{Pbz}, ABBz(t) * F_{Qx_{2n+1}}, STx_{2n+1}(t), F_{Pbz}, STx_{2n+1}(2t) * F_{Qx_{2n+1}}, ABBz(2t)\}
\]
\[
+ F_{ABBz}, STx_{2n+1}(\phi(t)) * F_{Pbz}, ABBz(\phi(t)) * F_{Qx_{2n+1}}, STx_{2n+1}(\phi(t))
\]
\[
* F_{Pbz}, STx_{2n+1}(2\phi(t)) * F_{Qx_{2n+1}}, ABBz(2\phi(t))
\]
As \(BP = PB, AB = BA\) so we have
\(P(Bz) = B(Pz) = Bz\) and \(AB(Bz) = B(AB)z = Bz\).

Letting \(n \to \infty\) and using (3.1.6), we get
\[
[1 + \alpha F_{Bz}, z(t)] * F_{Bz}, z(t)
\geq \alpha \min\{F_{Bz}, Bz(t) * Fz, z(t), F_{Bz}, z(2t) * Fz, Bz(2t)\}
\]
\[
+ F_{Bz}, z(\phi(t)) * F_{Bz}, Bz(\phi(t)) * F_{Bz}, z(2\phi(t)) * F_{Bz}, Bz(2\phi(t))
\]
\[
F_{Bz}, z(t) + \alpha F_{Bz}, z(t) * F_{Bz}, z(t)
\geq \alpha \min\{1 \cdot 1, F_{Bz}, z(2t)\}
\]
\[
* F_{Bz}, z(\phi(t)) * F_{Bz}, z(2\phi(t))
\]
which is a contradiction and we get \(Bz = z\) and so \(z = ABz = Az\).

Therefore, \(Pz = Az = Bz = z\). (3.1.9)

Step IV. Since \(P(X) \subseteq ST(X)\) there exists \(u \in X\) such that
\(z = Pz = STu\).
Put \(x = x_{2n}\) and \(y = u\) in (3.1.5), we get
\[[1 + \alpha F_{ABx_{2n}}, STu(t)] * F_{Px_{2n}}, Qu(t) \]
\[\geq \min_{\alpha F_{ABx_{2n}}, STz(t), F_{Px_{2n}}, STz(2t) * F_{Qz}, ABx_{2n}(2t)} \]
\[+ F_{ABx_{2n}}, STz(t), F_{Px_{2n}}, ABx_{2n}(\phi(t)) * F_{Qz}, STz(t), F_{Px_{2n}}, STz(2\phi(t)) \]
\[* F_{Qz}, ABx_{2n}(2\phi(t)). \]

Letting \(n \to \infty \) and using \((3.1.6)\), we get
\[[1 + \alpha F_{z, z(t)}] * F_{z, Qu(t)} \]
\[\geq \min_{F_{z, z(t)}, F_{z, z(2t)] * F_{Qz}, z(\phi(t))] + F_{z, z(\phi(t))] * F_{z, z(2\phi(t))] \}
\[* F_{Qz}, ABx_{2n}(2\phi(t)). \]

which is a contradiction by lemma \((2.1)\) and we get
\(Qu = z \) and so \(Qu = z = STu \).
Since \((Q, ST)\) is occasionally weak-compatible, we have
\(STQu = QSTu \) i.e. \(STz = Qz \).

Step V. Put \(x = x_{2n} \) and \(y = z \) in \((3.1.5)\), we have
\[[1 + \alpha F_{ABx_{2n}}, STz(t)] * F_{Px_{2n}}, Qz(t) \]
\[\geq \min_{F_{z, z(t)}, F_{z, z(2t)] * F_{Qz, STz(t), F_{Px_{2n}}, STz(2t) * F_{Qz}, ABx_{2n}(2t)] \}
\[+ F_{ABx_{2n}}, STz(t), F_{Px_{2n}}, ABx_{2n}(\phi(t)) * F_{Qz, STz(t), F_{Px_{2n}}, STz(2\phi(t)) \]
\[* F_{Qz}, ABx_{2n}(2\phi(t)). \]

Letting \(n \to \infty \) and using \((3.1.6)\) and step IV, we get
\[[1 + \alpha F_{z, Qz(t)}] * F_{z, Qz(t)} \]
\[\geq \min_{F_{z, z(t), F_{z, z(2t)] * F_{Qz, z(\phi(t))] + F_{z, z(\phi(t))] * F_{z, z(2\phi(t))] \}
\[* F_{Qz, Qz(\phi(t))] * F_{z, Qz(2\phi(t))] * F_{Qz, Qz(2\phi(t))} \]
\[* F_{Qz, ABx_{2n}(2\phi(t)). \]

which is a contradiction and we get \(Qz = z \).

Step VI. Put \(x = x_{2n} \) and \(y = Tz \) in \((3.1.5)\), we have
\[[1 + \alpha F_{ABx_{2n}}, STz(t)] * F_{Px_{2n}}, QTz(t) \]
\[\geq \min_{F_{z, z(t), F_{z, z(2t)] * F_{QTz, STz(t), F_{Px_{2n}}, STz(2t) * F_{QTz, ABx_{2n}(2t)] \}
\[+ F_{ABx_{2n}}, STz(t), F_{Px_{2n}}, ABx_{2n}(\phi(t)) * F_{QTz, STz(t), F_{Px_{2n}}, STz(2\phi(t)) \]
\[* F_{QTz, ABx_{2n}(2\phi(t)). \]

As \(QT = TQ \) and \(ST = TS \), we have
QTz = TQz = Tz and ST(Tz) = T(S(Tz)) = Tz.

Letting n → ∞, we get

\[[1 + \alpha F_{z, Tz}(t)] * F_{z, Tz}(t) \geq \alpha \min \{F_{z}, z(t) * F_{z, Tz}(t), F_{z}, Tz(2t) * F_{z, Tz}(t), F_{z}, Tz(2t) * F_{z}(\phi(t)) * F_{z, Tz}(t) * F_{z}(\phi(t)) \]

which is a contradiction and we get Tz = z.

Now, STz = Tz = z implies Sz = z.

Hence, Sz = Tz = Qz = z. \hspace{1cm} (3.1.10)

Combining (3.1.9) and (3.1.10), we get

Az = Bz = Pz = Qz = Sz = Tz = z

i.e. z is a common fixed point of A, B, P, Q, S and T.

Case II. Suppose AB is continuous.

Since AB is continuous and (P, AB) is semi-compatible, we get

\[(AB)^2 x_{2n} → ABz, \quad PABx_{2n} → ABz. \hspace{1cm} (3.1.11) \]

Now, we prove ABz = z.

Step VII. Put x = ABx_{2n} and y = x_{2n+1} in (3.1.5) and assuming ABz ≠ z, we get

\[[1 + \alpha F_{ABABz, 2n+1}(t)] * F_{PABx_{2n+1}}(t) \geq \alpha \min \{F_{PABx_{2n+1}}, ABABx_{2n+1}(t) * F_{Qx_{2n+1}}, STx_{2n+1}(t), F_{PABx_{2n+1}}, STx_{2n+1}(2t) \]

\[* F_{Qx_{2n+1}}, ABABx_{2n+1}(2t) * F_{PABx_{2n+1}}, ABABx_{2n+1}(\phi(t)) \]

\[* F_{Qx_{2n+1}}, STx_{2n+1}(\phi(t)) * F_{PABx_{2n+1}}, STx_{2n+1}(2\phi(t)) * F_{Qx_{2n+1}}, ABABx_{2n+1}(2\phi(t)). \]

Letting n → ∞ and using (3.1.11), we get

\[[1 + \alpha F_{ABz, z(t)}] * F_{ABz, z(t)} \geq \alpha \min \{1, F_{ABz, z(\phi(t))} * F_{ABz, z(\phi(t))} \]

\[* F_{ABz, ABz(\phi(t))} * F_{z, ABz(\phi(t))} * F_{z, z(\phi(t))} * F_{z, ABz(\phi(t))} \]

\[F_{ABz, z(t)} \]

\[+ \alpha F_{ABz, z(t)} \geq \alpha \min \{1, F_{ABz, z(\phi(t))} * F_{ABz, z(\phi(t))} \]

\[* F_{ABz, z(\phi(t))} * F_{z, z(\phi(t))} + F_{ABz, z(\phi(t))} \]

\[+ F_{ABz, z(\phi(t))} + F_{ABz, z(\phi(t))} \]

which is a contradiction and we get ABz = z.

Step VIII. Put x = z and y = x_{2n+1} in (3.1.5), we get

\[[1 + \alpha F_{ABz, STx_{2n+1}}(t)] * F_{Pz, Qx_{2n+1}}(t) \geq \alpha \min \{F_{Pz, ABz(t)} * F_{Qx_{2n+1}}, STx_{2n+1}(t), F_{Pz, STx_{2n+1}}, STx_{2n+1}(t), F_{Qx_{2n+1}}, ABz(2t) \]

\[+ F_{ABz, STx_{2n+1}}, STx_{2n+1}(\phi(t)) * F_{Qx_{2n+1}}, STx_{2n+1}(\phi(t)) * F_{Pz, STx_{2n+1}}(\phi(t)) \]

\[+ F_{ABz, STx_{2n+1}}, STx_{2n+1}(\phi(t)) * F_{Qx_{2n+1}}, STx_{2n+1}(\phi(t)) * F_{Pz, STx_{2n+1}}(\phi(t)) \]

\[+ F_{ABz, STx_{2n+1}}(\phi(t)) * F_{Pz, ABz(\phi(t))} + F_{ABz, z(\phi(t))} + F_{ABz, z(\phi(t))} \]

\[+ F_{ABz, z(\phi(t))} \]

\[+ F_{ABz, z(\phi(t))} \]

which is a contradiction and we get ABz = z.
Corollary 3.1.

Let A, S, P and Q be self maps of a complete Menger space \((X, F, *)\) with \(* = \min\) satisfying:

(a) \(P(X) \subseteq S(X), \ Q(X) \subseteq A(X)\);
(b) either P or A is continuous;

(c) (P, A) is semi-compatible and (Q, S) is occasionally weak compatible;

(d) \[1 + \alpha F_{Ax, Sy(t)} \cdot F_{Px, Qy(t)} \geq \alpha \min\{F_{Px, Ax(t)} \cdot F_{Qy, Sy(t)}, F_{Px, Qy(2t)} \cdot F_{Qy, Ax(2t)}\} \]
\[+ \alpha F_{Ax, Sy(\phi(t))} + F_{Px, Ax(\phi(t))} + F_{Qy, Sy(\phi(t))} + F_{Px, Sy(2\phi(t))} + F_{Qy, Ax(2\phi(t))}\]

for all \(x, y \in X, t > 0\) and \(\phi \in E\).

Then A, S, P and Q have a unique common fixed point in X.

Remark 3.2. In view of remark 3.1, corollary 3.1 is a generalization of the result of Pathak and Verma [9] in the sense that condition of compatibility of the first pair of self maps has been restricted to semi-compatibility.

REFERENCES

