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ABSTRACT
The paper compares three formulationsnefay (for groups of sizen > 2) similarity coefficients for binary
sequences. Properties that the similarity coeffisianay have in general, not just for specific date discussed,
and it is investigated how the differantvay formulations are related. Using threvay Bennani-Heiser coefficients,
the similarity betweemm sequences (2 m < n) is always equal to or greater than the similabigtween them
sequences aml— m other sequences:-Way coefficients based on 2-way information laekeyal of the properties
that the Bennani-Heiser coefficients possess. kamele, with the former coefficients it is possilitehave zero
similarity between two objects, but positive simitiabetween the two objects and a third object.

Keywords. Multi-way coefficients; n-Way measures; Simple matching coefficient; Jaccard coefficient; Dice
coefficient; Bennani-Heiser coefficients.

1. INTRODUCTION

Sequences of binary scores occur in various fielflsglata analysis and classification. Generally kimep a
sequence corresponds to an object or individualthadbinary scores reflect the presence or absehcertain
attributes of the object [2,18]. An object may bpexson that may or may not possess certain tiita,location
where certain species types do or do not occumany cases one wants to determine the amount dfagim
(agreement, resemblance) between two binary segseite classification literature contains a vasbant of
similarity coefficients that can be used to quantife similarity between binary sequences [3,233B85]. Popular
examples are the simple matching coefficient [28] the Jaccard coefficient [21]. We do not consimtefficients
that measure association between two binary vasaibl this paper. An example of an associationfiodeft is the
phi coefficient. Pairwise similarity coefficientday a central role in data analysis and classificatIndividual
coefficients can be used for summarizing parts mésgarch study, while coefficient matrices carubed as input
for multivariate data analysis techniques like comgnt analysis [15,18] or cluster analysis [1,3D,34

Coefficients that reflect the similarity betweerotgequences are here called 2-way coefficientsag-#defficients
only allow comparison of two sequences at a tinenlbe a positive integer. Multi-way orway coefficients (for
groups of sizen > 2) may be used to companeobjects at a time [7,11,36]. For example, the ¥-wWaccard
coefficient [21] measures the number of speciesdyghat are found together in two locations, reéato the total
number of species types that are found in the tweatlons. The 3-way Jaccard coefficient [4,7,19hsuees the
number of species types that are found togeth#érée locations, relative to the total number afcips types that
are founding the three locations. Henoeway coefficients can be used if one wants to kriber degree of
resemblance between 3, 4roobjects. For the free sorting method, Daws [8vatmbthat reduction of a distribution
over all subset patterns to 2-way similarity implless of information about how the individuals éalassified the
objects [19]. Furthermore, similar to 2-way cod#itts,n-way coefficients may be used as input in severthiods
of multi-way data analysis, including three-way tidiimensional scaling and three-way hierarchicas®@r analysis
[4,7,19,22]. Soma-way coefficients that are widely used in practe the multi-rater versions of Cohen's kappa
[5] proposed in [14,24,25]. Kappa is a popular desive statistic for assessing inter-rater religpion a nominal
scale [38,40,41,42,43].

In the classification literature-way similarity coefficients are usually definedfaactions of the 2-way or pairwise
information [26]. If one is interested in the siarity between three or more objects at a time,ranitive and
appealing option in statistics is taking the averafj all the pairwise coefficients that can be fechbetween the
objects. For example, Conger [6] showed that th#iwrater extension of Cohen's kappa proposed ght[24] is
the arithmetic mean of th&n — 1)/2 pairwise kappas that can be calculated withters [25]. For binary sequences,
Warrens [33] studied a family ofway coefficients that preserve the relations betweoefficients with respect to
correction for chance. This family includes the tiatdter kappa proposed in [6,20,25].

De Rooij [9] showed that-way coefficients that are functions of 2-way ca@éints do not give more information
than is already present in the 2-way coefficietist is, no higher order relations are given byséheway
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coefficients. Following Heiser and Bennani [19], Méas [36] formulatedh-way coefficients for binary sequences
that generalize basic characteristics of 2-wayfomehts. In contrast to otherway coefficients from the literature,
the n-way coefficients proposed in [36] are not functoaf the 2-way information, but can be considered
coefficients of simultaneous similarity [6,26].

In this paper, we compare three formulations-@fay similarity coefficients for binary sequenchattcan be found

in the literature. Furthermore, we discuss properthat the similarity coefficients may have in grah, not just for
certain data, and investigate how thway formulations are related. The paper is orgahias follows. In the next
section we introduce the 2-way coefficients. Badédinitions of n-way coefficients are presented in Section 3.
Three classes of-way generalizations of the 2-way coefficients emasidered in Sections 4 to 6. In Section 7, we
consider up to foun-way generalizations of the Dice similarity coeiifiet. Section 8 contains a discussion.
Bennani-Heiser coefficients and some of their prige are discussed in Section 4. Using Bennansétei
coefficients, the similarity betwean sequences (2 m< n) is never smaller than the similarity betweenrthe
sequences and — m additional sequences. An analogous condition fesidiilarities is considered a desirable
property for distance functions [4,22]. Sectionarsl 6 contaim-way coefficients that are functions of the 2-way
information. These coefficients lack some of theperties of the coefficients discussed in SectioRat example,
with these coefficients it is possible to have zamilarity between two objects, but positive sinily between the
two objects and a third object.

2. WAY SIMILARITY COEFFICIENTS

We will use the symbdb to denote a similarity coefficient. A 2-way simitg coefficientS® on a nonempty set of
objectsE, is a function from the Cartesian prod&etE to the real unit interval [0,1] that is symmeti$g, j) =
S@j, 1), and satisfieS(i,j) < S(i,i) = 1 for alli, j in E. In this paper, the objectsandj are binary sequences
(profiles, score patterns) of the same finite langtwhereu > 1 is a positive integer. Many coefficients can be
defined using the four dependent proportiaps b;;, ¢;; andd;; presented in Table 1. Instead of proportions, abl
1 may also be defined on counts or frequencieqotinns are used here for notational convenieleble 1 is a
cross-classification of two binary sequences. #i$® called a 2x2 table [32,33].

Table 1: Bivariate proportions table for binary seqces.

Sequence
Sequence Value 1 Value 2 Total
Value 1 aij bl] Di
Value 2 Cij dj q;
Total p; q; 1

In Table 1,a;;, b;;, c;; andd,;; are joint proportions, wheregs andgq; are marginal proportions. If value 1 and
value 2 in Table 1 are, respectively, 1 and O, thes the proportion of 1s thatandj share in the same positions,
and d;; can be interpreted as the proportion of Os thahdj share in the same positions. More precisely, if
sequences andj are the ratings ofi individuals by two observers on the presence @enabe of a trait, or the
presence/absence codingsuapecies types in two locations, thgnandd;; can be interpreted as, respectively, the
proportion of positive matches and negative matchestead of two binary sequences, Albatineh efldlconsider
two methods for clustering data, ang is the proportion of data points that were placedhe same cluster
according to methodsandj. Quantityp; is the proportionof 1s in sequerice

If there is no confusion possible, we will us& andd® for short, instead of;; andd;;. Furthermore, many
similarity coefficients for binary sequences (orR2ables) are defined as ratios. It may occur thatdenominator
of a similarity coefficient has zero value, in whicase the value of the coefficient is indeternara{35]. In the
following we assume that the value of each coeffitt is defined. See Batagelj and Bren [2] and War{88§for
robust definitions of similarity coefficients fox2 tables.

A straightforward coefficient of similarity is th@bserved proportion of agreement

5@ = o 4 4@,

Coefficienﬁs(l\z,[) is also known as the simple matching coeffici@®]| The subscript d§ for example SM irss(fq),
will be used to distinguish the various coefficerithe capital letters reflect the authors to whbencoefficient or
coefficient family can be attributed [1,31,32,33.34.

CoefficientSél\ZA)is the main member of the parameter family
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a® + 4@ a® + 4@

a® +d@+0(1—a® —d@) o+ (1-6)(a® +d®@y

wheref > 0 is used to avoid negative values. Coeﬁic@‘ﬁ% = Séf)(l). The Gower-Legendre familséf) (6) was
first studied in Gower [16] and Gower and Legendr@, p. 13]. The numerator Géf) (6) is equal to coefficient
5%, whereas the denominatortilus (1 —6) times coefficienss,.

A binary sequence can be either a nominal or amalrdariable. In the latter case a 1 is ‘'more isense than a 0,

for example, species presence/absence in ecolangffiCient SS(I\Z,[) is a popular coefficient if the sequences are
nominal. If the data are ordinal, popular choicesthe Jaccard coefficient [21]

o __a®?
[ TOL

5(2) ) =

and the Dice-Sgrenson coefficient [12,27]
@ _ Za(z) _ Za(z)
D Di + p} 1+ a(z) — d(Z)'

Coefficients&‘](z) andS[()z) are members of parameter family

a® a®
1@ +0(1-a®@—d®) (1-6)a® +6(1—d®)
wheref > 0. Coeff|C|ean(2) 5(2)(1) and coefﬂuenS(Z) = 5(2)( ). The Fichet-Gower fam|I§‘Z )(9) was first
studied in Fichet [13] and Gower [16]. The numerralh?éé) (6) is equal to the proportion of positive matchéd.
The denominator 03’152)(9) is more complicated.
A main reason for studying parameter famﬁé? ) andS(Z) (6) is the following property.

S(Z) ) =

Property 1. As noted in [16,18], any two members of paraméetily 5(2)(9) or two members af(z)(e) are
globally order equivalent [28]. If two coefficienése order equivalent, they are interchangeable wispect to an
analysis method that is invariant under ordinahgfarmations. Let us show the property Sé?(@). Let aiz) and
a?, andd® andd(?, denote two versions of respectivel§) andd®. We have

(2) (2) a§2) a§2)

= > . )
(1-6)a® +6(1- d(z)) —9)a? +0(1-dP) 1-d? 1-d?

Since inequality (1) does not depend6b|uNo members OS’F(?(H) are globally order equivalent.

3. n-WAY SIMILARITY COEFFICIENTS

In this paper, we consider three approaches ofdtatimg n-way similarity coefficients for binary sequencés3-
way similarity coefficients® on a set of objects is a function from the Cartesian prod&*ExE to the real unit
interval [0,1] that is symmetri§(i,j, k) = S(i,k,j) = S(,i,k) = S(,k, i) = S(k,i,j) = S(k,j, i), and satisfies
S, j, k) < S(@,i,i) = 1 for alli,jkin E. The definition of an-way similarity coefficient is analogous: a functio
SM:E™ - [0,1], that satisfies multi-way symmetry [39], and obgaits maximum of unity if then objects are
equal. In this paper we sometimes comparevay coefficient to one of its special cases, foample, anway
coefficient where Z m<n. Throughout the paper it is assumed that thefsetabjects is a subset of the set with
objects. ThusS™ reflects the similarity betweem objects, ands™ reflects the similarity between the same
objects andh —m additional objects. See also Property 2 at theodtlois section.

In the literaturen-way similarity coefficients are usually definedfasctions of the 2-way information. In the case
of binary sequences, one may typically obtain teeessary 2-way information by constructing rah — 1)/2
pairwise 2x2 tables between thesequences. The coefficients discussed in SecBoasd 6 are based on the
positive and negative matches andd;;.

The Bennani-Heiser coefficients discussed in Sectloare not functions of the 2-way information. Rbese
coefficients we must extend the concept of the 2-wrabivariate 2x2 table from Section 2 to a muldy orn-way
contingency table. In the 2-way case, the posiing negative matches? andd® are the elements of the main
diagonal of the 2x2 table. Quantitie§) andd® can be interpreted as the proportions of 1s anth&stwo
sequences share in the same positionsnbarary sequences we define the proportions:
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a™ = proportion of 1s that sequences share in the same positions;
d™ = proportion of Os that sequences share in the same positions.

The quantitiesz™ andd™ are the elements of the main diagonal ofrilveay contingency table. Quantitie$™
andd™ have an important property that will repeatedlyubed in Sections 5, 6 and 7.

Property 2. We havea™ > a™ andd™ > d™ for 2<m<n, that is, the proportion of 1s (0s) tlmatsequences
share in the same positions is always equal otgrélaan the proportion of 1s (0s) that thesequences and—m
other sequences share in the same positions.

4. BENNANI-HEISER COEFFICIENTS
Bennani-Heiser coefficients areway similarity coefficients that can be definedngsonly the quantitieg™ and

d™ defined in Section 3. Theseway formulations generalize certain basic charésttes of the corresponding 2-
way versions. Warrens [36] gave the following gatieations of coefficientssfl\z,[),sl(z) andS[(,Z):
™ 2a™
M _ ) L gm m__92 m _
Sap = a'™ +d™, Si 1= 4m and Sp; 1T a0 — g

Warrens [36] also gave the following generalizagioh parameter famili (f)(e) andSéé)(e):
a® 4+ 4™

SH6) =
a1 (6) 6+ (1—8)(a™ +dm)

and

a®
(1-60)a® +6(1—dm™Y
The 3-way coefficiem&‘sff,l)1 and 3-way parameter familgég)1 (0) were first formulated in Bennani-Dosse [4] and
Heiser and Bennani [19]. It should benoted thafftimetion1 — S](ln) was already used in Cox et al. [7, p. 200]. The
latter function is also studied in [39].
Jaccard [21] studied the distribution of specieplahts in three different Alpine districts. CoefﬁntS](Z) can be
interpreted as the number of species types commond districts, divided by the total number of cigs types in

the two districts. The interpretation of coeffidieﬁﬁ) is analogous to that cﬁ‘](z): the number of species types

common to three districts, divided by the total temof species types in the three districts.
Cox et al. [7] pointed out thatway coefficients may detect similarity where 2-wapefficients fail. We consider
the following example.

S ) =

Example 1. Suppose we have the following four binary seqasrn ten attributes.

objects attributes
[ 0 1 0 01 0 O 1 00O
j 0 0 001 1 0001
k 0 0 0121 01000
I 11 1 1 0 1 1 1 1 1

The 2-way Jaccard coefficient compares the numbgositions where a 1 occurs in both sequencesddadtal
number of positions where a 1 occurs in one ofstguences. The 3-way Jaccard coefficient [4,7,@8]pares the
number of positions where a 1 occurs in all thesgusnces to the total number of positions wher@eclirs in one

of the three sequences. For these data, the siay2daccard coefficients are all equﬂ,fzi = 1/5), giving no
discriminative information about the objects. Hoegwhe 3-way Jaccard coefficient between objécisand k
(5](13) = 1/7) differs from the other three 3-way coefficienﬁéﬂ = 0). We may conclude that objécts different

fromi, j andk.
One may also argue that the wrong 2-way coeffidierst been specified for analyzing these data. Diredperty 1,

coefficientS](Z) cannot be replaced by another member of faﬂﬁﬁl(e), since the six 2-way coefficients between
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the four objects are also equal for this other foacieht. This can be seen from replacing the indiguaigns in (1)
by an equality sign.

To obtain a different outcome of the 2-way datalysis, one should use a different coefficient, étxampless(fq).
The 2-way simple matching coefficient compares rthenber of positions where either a 1 or 0 occurbadth
sequences to the total number of positions. Faetltata, the three 2-way simple matching coeffisibetween, |
andk are S& (i, /) = S&) (i, k) = SE(j, k) = 3/5, whereas the three 2-way simple matching coefftsibetween

i, j andk on the one hand arcbn the other, ar®2 (i,1) = S&(j,1) = s& (k,1) = 1/5. Again, we conclude that
objectl is different fromi, j andk.

Any two members of parameter famﬂ}éf)(e) or two members oféé)(e) are globally order equivalent (Property

1). Then-way generalizationséﬂ (9 andségi (6) preserve Property 1.

Property 3. Two members of famil;‘iéﬁ(e), or ofségi(e), are globally order equivalent. Let us show theperty

for S (). Leta™ andal”, andd™ andd{", denote two versions of respective? andd™. We have
ad® ) ed
0+1-0)(@a®+d"™) 6+ @1-60)(al” +dM)

Since inequality (2) does not dependéiwo members oféf} (6) are globally order equivalent.

ain) + din) > agn) + dgn). (2)

The following property of Bennani-Heiser coefficigris perhaps the most distinctive. Property didosaty related
to Property 2.

Property 4. Bennani-Heiser coefficients satis§y™ > S™ for 2 < m < n (see Section 3), that is, the similarity
betweerm sequences is always equal to or greater thanrtiiksty between then sequences ami— m additional
sequences (see Example 1). The property charazteal? Bennani-Heiser coefficients in this paped does not

depend on the particular definition of similariBor example, we have boﬂ‘g(;,lnl) = Ss(% and S](lm) = S](ln).

Property 4 has its origin in the axiomatizationghoke-way distances presented in [19,22]. Jolylan€alvé [22]
require that a three-way distance between threectidbjs not smaller than the distance between fwtbemn. This
desideratum is translated to Property 4 by transifog a similarity coefficient into a dissimilaritgr distance
function by taking the complement- S.

5. ALTERNATIVE n-WAY SIMILARITY COEFFICIENTS

Instead of using the quantitie§” andd™, which define Bennani-Heiser coefficientsway similarity coefficients
may also be defined using the 2-way informatiom. é@mple, ifa;; is important in the comparison of sequenices
andj, then we may use;;, a; anda;, when comparing, j andk. In this section we consider a classnefiay
coefficients based on 2-way quantities, that wasmédated and investigated in Warrens [32,33].

Warrens [33] introduced the following generalizagf coefficient§s(l\2,[) andS[(,Z) for n binary sequences:

n
2
Ss(ﬁ)z = mZ(au +d;;))
i<j
and
m _ 22?<j a;j
P2 (n-DXp
The quantity2/[n(n — 1)]in Ss(ﬁ)z is used to obtaifl < Ss(ﬁ)z <L Coefficientss(,\’,?2 is the arithmetic mean of the
n(n —1)/2 pairwise S& = a;; + d;;.
Warrens [33] shows that after correction for chaﬂéﬁ’z andS,g’;) become identical. Under the assumption of two
different frequency distributions, the cell; of the 2x2 table (Section 2) has expectaﬂcﬁni}-) = p;p;, Wherep;
andp; are the marginal proportions corresponding todéka;;. If one usesE(aij) = p;p; for all n(n —1)/2

different 2x2 tables, the?}gﬁ)z andS,g’;) become after correction for chance,
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Yi<j(ai; — pipy)
%Z? pi — Z?<j pip;

S =

Coefficient Sl§") is the multi-rater generalization of Cohen's kapph that is discussed and studied in
[6,20,25,40,41].
The heuristics used for formulati ")2 ands[()’zl) may also be used for generalizing parameter fags '?(9) and
5$2(6). We obtain
SO = S W
0+ (1= 0) gy Xi (i + dij)

and
s™ gy = i<j &ij
ez (1-6) Xi;ai; + (22 ¥ dy)

Recall that the numerator 6 f)(a) is equal to coefficienﬁs(l\z,[), whereas the denominatordsplus (1 —6) times
coefficientss(fq) (see Section 2). In the famlﬁég () the coefficienb‘s(l\z,[) is replaced by its-way extension?s(ﬁ)2 in
both the numerator and the denominator. The faﬂéﬂg/(e) extendsSF(é)2 (6) in a similar way.

Using the same heuristics to generalize coeﬁic&*}éﬂt we obtain

n
sm i<j %ij
2 T nn-1) _ \n d
2 i<j™“ij

Any two members of the 2-way parameter fam}ﬁ) (6), or two members oﬂ’éé) (6), are globally order equivalent

roperty 1). Then-way generalization an preserve Property 1, similar an
Property 1). Th lizations ") () and S (6 Property 1, similar ) () andS. (6
from the previous section (Property 3).

Property 5. Two members of familygg (8), or ofSF(S% (), are globally order equivalent. Let us show theperty

for SF(S% (0). Letx; andx,, andy, andy,, denote two versions of respectivli. ; a;; and}i ; d;;. We have
X1 > X2 X1 > X2
nin— - n(n- S wms = n(n- . 3
(1_‘9)x1+9((Tl)_}’1) (1_9)x2+9((Tl)_}’2) ) —y, = —y, 3

2 2

Since inequality (3) does not dependéiwo members OS’F(S% (6) are globally order equivalent.

For Bennani-Heiser coefficients (Section 4), thmilsirity betweerm sequences is never smaller than the similarity
between then sequences and — m other sequences (Property 4). The following exansplews that the-way
coefficients considered in this section do not pssshis property.

Example 2. Suppose we have three binary sequences on fiileuaes:

objects attributes
i o 1 o 1 1
j 1 0 1 o0 1
k 1 0 1 1 1

For these data the three 2-way simple matchingficteits between the three objects aﬁé\z,‘)(i,j) =1/5,
S&(i,k) = 2/5 and S& (j, k) = 4/5. The 3-way simple matching coefficiens), = 7/15, is the arithmetic
mean of the three 2-way coefficients. Furthermdhe three 2-way Dice coefficients arﬁ[()z)(i,j) =1/3,
S, k) = 4/7 and S§?(j, k) = 6/7. The 3-way Dice coefficiens? = 3/5. Thus, using the coefficients from

69



IJRRAS 16 (1)e July2013 Warrense Similarity Coefficients for Binary Sequences

this section, the amount of similarity may increageen one increases the number of sequences atslbigt are
compared.

The coefficient families formulated in this sectiomy be compared to the Bennani-Heiser familiesnfitbe
previous section. It turns out that coefficientafrthe two different approaches are bounds of onthar. Theorem

2 shows how the Gower-Legendre familﬁégi(e) andSéf% () are related. In the proof of Theorem 2, we use the
following lemma.

Lemma 1. Let x, y and 6 be positive real numbers. Then

X < 4 =
0+(1—0)x 6+ (1—0)y =

Theorem 2. 51 (6) < SU3(6) for all 6> 0.
Proof: Let

n
’ nn—1)4L""Y e
i<j
Due to Lemma 1, it must be shown that

n
nn—1)
= (e + ™) < Z(aij +dy)). 4)
i<j
Inequality (4) follows from Property 2, that i, > a™andd;; > d™. =

Theorem 4 specifies how the Fichet-Gower famiﬂ&%(&) andségg (6) are related. The following lemma is used
in the proof of Theorem 4.

Lemma 3. Let x, y, u, v and 0 be positive real numbers. Then

x - u
A-0)x+0y~ (1—-60)u+6v

<R
IA
<l

Theorem 4. 5 (6) < S{(6) for all 6> 0.
Proof: Letx = a™,y =1 —-d™, and

n n
nn—1)
u=ZaU, and U=T—Zdu.
i<j i<j
Due to Lemma 3, it must be shown that

am

. ?<j aij (5)
1-d™ " nn—-1)/2-X;dy

Inequality (5) follows from Property &

6. AVERAGESOF 2-WAY COEFFICIENTS

As shown in the previous section, instead of ugimg quantitiesa™ and d™, which define Bennani-Heiser
coefficients,n-way similarity coefficients may be functions oktR-way information. Tha-way formulations in the
previous section preserve relations between 2-vegfficients with respect to correction for chan88][ As an
alternative approach, we could also formulatevay coefficients that are functions of the 2-wagefficients
themselves. There are many functions that can kd ts obtain a mean value ofn — 1)/2 coefficients, for
example, the geometric and harmonic means or toem@an square. The arithmetic mean is howeventbst
commonly used and best understood in statisticekh&umore, in the context of 3-way distances, thithmetic
mean is analogous to the perimeter distance [10,19]
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In this section we define-way coefficients as the arithmetic mean of tifle — 1)/2 pairwise (2-way) coefficients.
The arithmetic mean is the most commonly used tyjpaverage and is a natural measure of averageasimyi

amongn objects. Consider the followingrway generalization of the simple matching coee’a‘r'rrtissfl\z,l) for n binary
sequences:

n n
2 2
n) _ E @) _ E
551\7/113 = nn—1) '<.SSM = n(n—1 '<.(aij + dij)-
i<j <J

Coefficientss(ﬁ)3 is the arithmetic mean of thgn — 1)/2 pairwise coefficients that can be formeckgin sequences.
Note '[hal:S‘s(h’,?3 is equivalent tdsfﬁ)z, then-way generalization of the simple matching coegfitifrom Section 5.

We consider the following-way generalizations of the Jaccard coeffic'ﬁiﬁ% and the Dice coefficietﬁ,gz):

n
g _ 2 Z aij
I3 n(n—l),<_1—dij
i<j

and

n
S(n) _ 2 Z Zaij
D3 n(n—l) = au+1—dl]

We also have the following-way generalizations of parameter familﬁé§) ()] andSF(é)(H):

GL3 n(n - 1) = 6+ (1 - 9)((11] + d’-])

and

n
FG3 n(n—l)_ (1—6)au+9(1—du)
i<j

Eachn-way coefficient and family is simply the arithmetnean of alin(n — 1)/2 pairwise coefficients or family
functions that can be formed givarsequences.

Any two members of the 2-way parameter famﬁ? (6), or two members oS’F(é)(H), are globally order equivalent
(Property 1). Then-way generalizationséf%(e) andségg(e) preserve Property 1, similar to familiﬁgi () and
s{(6) (Property 3) and families") (6) andS%)(6) (Property 5).

Property 6. Two members of famil)iéf; () andSF(g; (6), are globally order equivalent. (See also Properd and

5). The result follows from the fact that the cepending 2-way coefficient families are globallyder equivalent
(Property 1).

Example 3. In Example 1 we considered a data matrix for Whtee six 2-way Jaccard coefficients were all equal
but one 3-way Jaccard coefficient was different.niers of faminSéf%(e) and Séf%(e) do not share this
characteristic. In fact, for givefy all n-way coefficients are equal if the 2-way coeffideeare equal. Fo?éf; )

n)

this is by definition. FolS‘éL2 (6) this can be seen as followsalf + d;; = c, we obtain

W _ ) _ ¢
Stz = Sc o+ (1-06)

which is a function off. Familiesséf%(a) and Séf%(a) are thus not suited for detecting possible highder
relations between the objects that cannot be deeowvwhen one only considers the 2-way information.

Example 4. Suppose we have the following four binary seqasman ten attributes.

71



IJRRAS 16 (1)e July2013 Warrense Similarity Coefficients for Binary Sequences

objects attributes
[ 1 1 0 1 0 0 1 0o o0 o
] 1 0 1 o0 1 0 0 O 1 o
k 0 1 0 O 1 1 0 1 0 O
[ 0O 0 1 1 0 1 0 0 O 1

For these data the six 2-way Jaccard coefficieata/ésen the four objects areal eq@‘lz)( = 1/7). In this section

the n-way coefficients are arithmetic means of the 2-wagfficients. Thereforesl(z) = 51(33) = 51(34) =1/7, thatis,

all n-way coefficientsif > 2) are equal. The-way coefficients discussed in this section arecfioms of the 2-way
coefficients, and are thus not suited for detectiogsible 3-way or higher-order similarity betwelea objects when
the 2-way coefficients give no discriminative infwation.

For Bennani-Heiser coefficients (Section 4), thaiksirity betweenm sequences is always equal to or greater than
the similarity between thm sequences anad— m other sequences (Property 4). The following exarmsplawvs that
then-way coefficients considered in this section dopudsess this property.

Example 5. Consider the data in Example 2. For these datthttee 2-way simple matching coefficients betwiben
three objects ar§{ (i, j) = 1/5, S& (i, k) = 2/5 andS$E) (j, k) = 4/5. The 3-way simple matching coefficient,
Ss(fq)z = 55(54)3 = 7/15, is the arithmetic mean of the three 2-way cogfits. Furthermore, the three 2-way Dice
coefficients are&s? (i, j) = 1/3, S (i, k) = 4/7 andS?(j, k) = 6/7. The 3-way Dice coefficier\> = 37/63,

is the arithmetic mean of the three 2-way coeffitse Thus, using the coefficients from this sectitve amount of
similarity may increase when one increases the rumbsequences or objects that are compared.

The parameter families formulated in this secticayrhe compared to the Bennani-Heiser coefficients fSection
4. It turns out that coefficients from the two farations are bounds of one another. Theorem 5 shmmsthe

Gower-Legendre familieséfi(e) andség (0) are related. Lemma 1 is used in the proof of Téweos.

Theorem 5. 5{1(6) < SU3(6) for all 6> 0.
Proof: The inequality holds if it can be shown that

a(n) + d(n) < aij + dl] (6)
Letx = a™ + d™ andy = a;; + d;;. Due to Lemma 1, inequality (6) holds if and oifly
a(n) + d(n) < aij + dl] (7)

Inequality (7) follows from Property 2, that i, > a™ andd;; > d™. m

Theorem 6 specifies how the Fichet-Gower famlﬂ&%(@) andSF(S; () are related. Lemma 3 is used in the proof
of Theorem 6.

Theorem 6. 5 (6) < S{(6) for all 6> 0.
Proof: The inequality holds if it can be shown that

a(n) a;;
ij
< . (8)
Letx =a™,y =1—-d™,u =q; andv = 1 — d;;. Due to Lemma 3, inequality (8) holds if and oifily
m .
a au (9)

< .
1—d®™ = 1-d
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Inequality (9) follows from Property &

7. DICE COEFFICIENTS
In Warrens [36], a central role is played by thed)d:oefficienb‘[()z). Thus far, we considered threevay
generalizations of?:

m __ 20" g _ 2¥i) )

DI =g 41 —dm’ a; +MD ¥ d;

l.<]
and

s _ Z
b3 n(n -DLlia;+ 1

Then-way Dice coefficient
o _ na™
bt Xiv’
is a fourth generalization Gﬁz)considered in Warrens [36]. Coefficie?é”) does not belong to any of the classes
considered in Sections 4, 5 or 6. Due to Theorerasd46, we havs(y < S& ands{P < s{?, respectively. The

n-way coefficientss ands(” are related in the following way.

Proposition 7. S(”) < S(”)
Proof: Using the |dent|ty

n—l)Zpl Z(au+1 U)

i<j
we can write

n(n—1)a®™
z<1(au +1- ij)
Since the denominator 67 is equal to the denominator £, we haves? < s if and only if

nn-1)a® <
S (10)

S(n) —

i<j

Inequality (10) follows from Property 2. This coraf#s the prool

8. DISCUSSION

Pairwise or 2-way similarity coefficients only aNacomparison of two objects at a time. Multi-waeffacients (for
groups of sizen > 2) may be used to compamnebjects at a time [7,11,26,36,40]. In this paper,compared three
definitions ofn-way similarity coefficients fom binary sequences. Furthermore, we discussed prepehat the
similarity coefficients may have in general, naitjéor certain data. All three definitions presetive globally order
equivalence of two coefficients (Properties 3, 8 8n The Bennani-Heiser coefficients defined ictid®m 4 possess
some properties that tireway coefficients based on 2-way information, cdeseéd in Sections 5 and 6, do not
exhibit.

First of all, for 2< m < n, the mway similarity of m binary sequences is never smaller thanrthweay similarity
between then sequences and— m other sequences (Property 4). In general, the ahafwimilarity decreases as
the number of objects compared, increases. Thealgtithis is considered a desideratum in Joly eadCalvé [22]
in the context of distance functions. However, magtice this often means that Bennani-Heiser caefits have
(very) small values for high values of(n = 5, 6) or even moderate valuesnofn = 3, 4). Then-way coefficients
from Section 5 are based on the 2-way informatiod asually have a value that is intermediate of 2hgay
similarities between the objects (Example 2). Bfjrigon, the value of the arithmetic mean discukge Section 6
lies between the values of the 2-way coefficieRtgthermore, we showed that the Bennani-Heisefficazits are
bounded from above by both the corresponditvgay coefficients in Section 5 as well as the cgpondingn-way
coefficients in Section 6 (Theorems 2, 4,5 andlée n-way coefficients from Sections 5 and 6 thus alwargs/ide
higher values.
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A main motivation for formulating the Bennani-Heaismefficients in [36] is that theseway coefficients may be
used to detect possible relations between the whacsequences (Example 1) that cannot be obtdined the
pairwise or 2-way information. Theway coefficients from Section 5 and 6 are base@&-@ray information. These
coefficients provide none or little discriminativieformation when the 2-way coefficients give noaisiinative
information (Examples 3 and 4), and are thus nibégddor detecting higher-order relations betwdendbjects.

In this paper, the differenb-way definitions of similarity for binary sequencésve only been compared
theoretically. For future work it should be invgstied whether the various definitions also resuldifferent
outcomes inn-way data analysis, for example, three-way multitisional scaling or hierarchical clustering
analysis [4,19,22]. We mention the following twadies. Gower and De Rooij [17] demonstrated thagg-and 3-
way multidimensional scaling give very similar risuif the 3-way dissimilarities are defined on tReway
distances (generalized Euclidean distance, permdéttance). Thus it appears that 3-way coeffigewhen defined
as functions of the 2-way coefficients, do not giwere information than is already present in theva3-
coefficients. In contrast, Cox et al. [7] compadiffierentn-way multidimensional scaling analyses (for differs)

using the complement of the Bennani-Heiser co«a‘tﬁtﬂl(l")(Jaccard coefficient). These authors illustrateat ith

way multidimensional scaling do in fact provide feiEnt output and interpretations than ordinary &rw

multidimensional scaling.

In this paper we only consideredvay generalizations of the popular simple matchiagfficient, the Jaccard and
Dice coefficients [36,37], and two-way families that generalize these three coeflitsi§18]. Some of the ideas
presented in this paper can be applied to or msy hbld forn-way coefficients not studied here. A variety of
examples of-way coefficients for binary sequences can be fdanrjd6,40].

9. ACKNOWLEDGEMENT
This research was done while the author was fubgietie Netherlands Organisation for Scientific Resk, Veni
project 451-11-026.

10. REFERENCES

[1]. A. N. Albatineh, M. Niewiadomska-Bugaj, and D. Mika On similarity indices and correction for chanc
agreement. Journal of Classification, 23:301-3D862

[2]. V. Batagelj and M. Bren. Comparing resemblance omess Journal of Classification, 12:73-90, 1995.

[3]. F. B. Baulieu. A classification of presence/absebesed dissimilarity coefficients. Journal of Cifisation,
6:233-246, 1989.

[4]. M. Bennani-Dosse. Analyses Métriques & Trois Vo) Dissertation. Université de Haute Bretagneni®sril,
France, 1993.

[5]. J. Cohen. A coefficient of agreement for nominallss. Educational and Psychological Measuremen87246,
1960.

[6]. A. J. Conger. Integration and generalization ofgegpfor multiple raters. Psychological Bulletin,:&®-328,
1980.

[7]. T.F. Cox, M. A. A. Cox, and J. A. Branco. Multidémsional scaling of n-tuples. British Journal oftManatical
and Statistical Psychology, 44:195-206, 1991.

[8]. J. T. Daws. The analysis of free-sorting data: Belypairwise comparison. Journal of Classificatid8;57-80,
1996.

[9]. M. de Rooij. Distance models for three-way tabled ¢hree-way association. Journal of Classificatib®t161-
178, 2002.

[10]. M. de Rooij and J. C. Gower. The geometry of tidadistances. Journal of Classification, 20:181-22M3.

[11]. J. Diatta. Description-meet compatible multiway sthsilarities. Discrete Applied Mathematics, 154:4957,
2006.

[12]. L. R. Dice. Measures of the amount of ecologic eisgion between species. Ecology, 26:297-302, 1945.

[13]. B. Fichet. Distances and Euclidean distances fesence-absence characters and their applicatidactor
analysis. In J. de Leeuw, W. J. Heiser, J. J. Maanlnand F. Critchley, editors, Multidimensional ®#nalysis,
pages 23-46. DSWO Press, Leiden, 1986.

[14]. J. L. Fleiss. Measuring nominal scale agreemenngmaany raters. Psychological Bulletin, 76:378-38271.

[15]. J. C. Gower. Some distance properties of laterttand vector methods used in multivariate analyBismetrika,
53:325-338, 1966.

[16]. J. C. Gower. Euclidean distance matrices. In J.ebuw, W. J. Heiser, J. J. Meulman, and F. Critghéglitors,
Multidimensional Data Analysis, pages 11-22. DSW@sB, Leiden, 1986.

[17]. J.C. Gower and M. de Rooij. A comparison of thdtiitmensional scaling of triadic and dyadic distas. Journal
of Classification, 20:115-136, 2003.

74



IJRRAS 16 (1)e July2013 Warrense Similarity Coefficients for Binary Sequences

[18].
[19].
[20].
[21].
[22].
[23].
[24].

[25].
[26].

[27].

[28].
[29].

[30].
[31].

[32].
[33].
[34].
[35].
[36].
[37].
[38].

[39].
[40].

[41].
[42].

[43].

J. C. Gower and P. Legendre. Metric and Euclideaopgrties of dissimilarity coefficients. Journal of
Classification, 3:5-48, 1986.

W. J. Heiser and M. Bennani. Triadic distance mexd&kiomatization and least squares representaliomnal of
Mathematical Psychology, 41:189-206, 1997.

A. P. J. M. Heuvelmans and P. F. Sanders. Beo@dslgereenstemming.ln P. F. Sanders T. J. H. Meikgg
editor, Psychometrie in de Praktijk, pages 443-&ith Instituut voor Toestontwikkeling, Arnhem, 129

P. Jaccard. The distribution of the flora in th@iAé zone. The New Phytologist, 11:37-50, 1912.

S. Joly and G. Le Calvé. Three-way distances. dwfClassification, 12:191-205, 1995.

M.-J. Lesot, M. Rifgi, and H. Benhadda. Similanityasures for binary and numerical data: A survegrhational
Journal of Knowledge Engineering and Soft Data tigras, 1:63-84, 2009.

R. J. Light. Measures of response agreement folitgtiiee data: Some generalizations and alternative
Psychological Bulletin, 76:365-377, 1971.

R. Popping. Overeenstemmingsmaten voor nominake &djksuniversiteit Groningen, Groningen, 1983.

R. Popping. Some views on agreement to be usedriteit analysis studies. Quality & Quantity, 4410678,
2010.

T. Sgrenson. A method of stabilizing groups of egleint amplitude in plant sociology based on tmeilarity of
species content and its application to analyseghef vegetation on Danish commons. Kongelige Danske
Videnskabernes Selskab Biologiske Skrifter, 5:11B18.

R. Sibson. Order invariant methods for data anslykiurnal of the Royal Statistical Society, SeBe84:311-349,
1972.

R. R. Sokal and C. D. Michener. A statistical metfior evaluating systematic relationships. Univgref Kansas
Science Bulletin, 38:1409-1438, 1958.

D. Steinley. Properties of the Hubert-Arabie adidsRand index. Psychological Methods, 9:386-396420

M. J. Warrens. Bounds of resemblance measuresiary(presence/absence) variables. Journal os(ilstion,
25:195-208, 2008.

M. J. Warrens. On association coefficients for 2aBlles and properties that do not depend on theinar
distributions. Psychometrika, 73:777-789, 2008.

M. J. Warrens. On similarity coefficients for 2x&btes and correction for chance. Psychometrika4873502,
2008.

M. J. Warrens. On the equivalence of Cohen's kappmhthe Hubert-Arabie adjusted Rand index. Jouofial
Classification, 25:177-183, 2008.

M. J. Warrens. On the indeterminacy of resemblameasures for binary(presence/absence) data. Joafnal
Classification, 25:125-136, 2008.

M. J. Warrensk-Adic similarity coefficients for binary (presenabsence) data. Journal of Classification, 26:227-
245, 2009.

M. J. Warrens. On Robinsonian dissimilarities, ¢besecutive ones property and latent variable nsodelvances
in Data Analysis and Classification, 3:169-184, 200

M. J. Warrens. Inequalities between multi-ratergagp Advances in Data Analysis and Classificatibf71-286,
2010.

M. J. Warrensn-Way metrics. Journal of Classification, 27:173-12010.

M. J. Warrens. A family of multi-rater kappas tlcah always be increased and decreased by comluatagories.
Statistical Methodology, 9:330-340, 2012.

M. J. Warrens. On the equivalence of multi-ratgygas based on 2-agreement and 3-agreement witty lsicares.
ISRN Probability and Statistics, 2012.

M. J. Warrens. Cohen's weighted kappa with additigegghts. Advances in Data Analysis and Classificgt7:41-
55, 2013.

M. J. Warrens. Conditional inequalities between &u$ kappa and weighted kappas. Statistical Metbggip
10:14-22, 2013.

75



