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ABSTRACT 

The paper compares three formulations of n-way (for groups of size n ≥ 2) similarity coefficients for binary 
sequences. Properties that the similarity coefficients may have in general, not just for specific data, are discussed, 
and it is investigated how the different n-way formulations are related. Using the n-way Bennani-Heiser coefficients, 
the similarity between m sequences (2 ≤ m ≤ n) is always equal to or greater than the similarity between the m 
sequences and n – m other sequences. n-Way coefficients based on 2-way information lack several of the properties 
that the Bennani-Heiser coefficients possess. For example, with the former coefficients it is possible to have zero 
similarity between two objects, but positive similarity between the two objects and a third object. 
 

Keywords: Multi-way coefficients; n-Way measures; Simple matching coefficient; Jaccard coefficient; Dice 
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1. INTRODUCTION 
Sequences of binary scores occur in various fields of data analysis and classification. Generally speaking, a 
sequence corresponds to an object or individual and the binary scores reflect the presence or absence of certain 
attributes of the object [2,18]. An object may be a person that may or may not possess certain traits, or a location 
where certain species types do or do not occur. In many cases one wants to determine the amount of similarity 
(agreement, resemblance) between two binary sequences. The classification literature contains a vast amount of 
similarity coefficients that can be used to quantify the similarity between binary sequences [3,23,31,32,35]. Popular 
examples are the simple matching coefficient [29] and the Jaccard coefficient [21]. We do not consider coefficients 
that measure association between two binary variables in this paper. An example of an association coefficient is the 
phi coefficient. Pairwise similarity coefficients play a central role in data analysis and classification. Individual 
coefficients can be used for summarizing parts of a research study, while coefficient matrices can be used as input 
for multivariate data analysis techniques like component analysis [15,18] or cluster analysis [1,30,34]. 
Coefficients that reflect the similarity between two sequences are here called 2-way coefficients. 2-Way coefficients 
only allow comparison of two sequences at a time. Let n be a positive integer. Multi-way or n-way coefficients (for 
groups of size n ≥ 2) may be used to compare n objects at a time [7,11,36]. For example, the 2-way Jaccard 
coefficient [21] measures the number of species types that are found together in two locations, relative to the total 
number of species types that are found in the two locations. The 3-way Jaccard coefficient [4,7,19] measures the 
number of species types that are found together in three locations, relative to the total number of species types that 
are founding the three locations. Hence, n-way coefficients can be used if one wants to know the degree of 
resemblance between 3, 4 or n objects. For the free sorting method, Daws [8] showed that reduction of a distribution 
over all subset patterns to 2-way similarity implies loss of information about how the individuals have classified the 
objects [19]. Furthermore, similar to 2-way coefficients, n-way coefficients may be used as input in several methods 
of multi-way data analysis, including three-way multidimensional scaling and three-way hierarchical cluster analysis 
[4,7,19,22]. Some n-way coefficients that are widely used in practice are the multi-rater versions of Cohen's kappa 
[5] proposed in [14,24,25]. Kappa is a popular descriptive statistic for assessing inter-rater reliability on a nominal 
scale [38,40,41,42,43]. 
In the classification literature, n-way similarity coefficients are usually defined as functions of the 2-way or pairwise 
information [26]. If one is interested in the similarity between three or more objects at a time, an intuitive and 
appealing option in statistics is taking the average of all the pairwise coefficients that can be formed between the 
objects. For example, Conger [6] showed that the multi-rater extension of Cohen's kappa proposed in Light [24] is 
the arithmetic mean of the n(n – 1)/2 pairwise kappas that can be calculated with n raters [25]. For binary sequences, 
Warrens [33] studied a family of n-way coefficients that preserve the relations between coefficients with respect to 
correction for chance. This family includes the multi-rater kappa proposed in [6,20,25]. 
De Rooij [9] showed that n-way coefficients that are functions of 2-way coefficients do not give more information 
than is already present in the 2-way coefficients, that is, no higher order relations are given by these n-way 
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coefficients. Following Heiser and Bennani [19], Warrens [36] formulated n-way coefficients for binary sequences 
that generalize basic characteristics of 2-way coefficients. In contrast to other n-way coefficients from the literature, 
the n-way coefficients proposed in [36] are not functions of the 2-way information, but can be considered 
coefficients of simultaneous similarity [6,26]. 
In this paper, we compare three formulations of n-way similarity coefficients for binary sequences that can be found 
in the literature. Furthermore, we discuss properties that the similarity coefficients may have in general, not just for 
certain data, and investigate how the n-way formulations are related. The paper is organized as follows. In the next 
section we introduce the 2-way coefficients. Basic definitions of n-way coefficients are presented in Section 3. 
Three classes of n-way generalizations of the 2-way coefficients are considered in Sections 4 to 6. In Section 7, we 
consider up to four n-way generalizations of the Dice similarity coefficient. Section 8 contains a discussion. 
Bennani-Heiser coefficients and some of their properties are discussed in Section 4. Using Bennani-Heiser 
coefficients, the similarity between m sequences (2 ≤ m ≤ n) is never smaller than the similarity between the m 
sequences and n – m additional sequences. An analogous condition for dissimilarities is considered a desirable 
property for distance functions [4,22]. Sections 5 and 6 contain n-way coefficients that are functions of the 2-way 
information. These coefficients lack some of the properties of the coefficients discussed in Section 4. For example, 
with these coefficients it is possible to have zero similarity between two objects, but positive similarity between the 
two objects and a third object. 
 
2.  WAY SIMILARITY COEFFICIENTS 
We will use the symbol S to denote a similarity coefficient. A 2-way similarity coefficient �(�) on a nonempty set of 
objects E, is a function from the Cartesian product E×E to the real unit interval [0,1] that is symmetric, �(�, �) =
	�(�, �), and satisfies	�(�, �) 	≤ 	�(�, �) 	= 	1 for all i, j in E. In this paper, the objects i and j are binary sequences 
(profiles, score patterns) of the same finite length u, where u ≥ 1 is a positive integer. Many coefficients can be 
defined using the four dependent proportions �
�, �
�, �
� and �
� presented in Table 1. Instead of proportions, Table 
1 may also be defined on counts or frequencies; proportions are used here for notational convenience. Table 1 is a 
cross-classification of two binary sequences. It is also called a 2×2 table [32,33]. 
 

Table 1: Bivariate proportions table for binary sequences. 
 Sequence j  
Sequence i Value 1 Value 2 Total 
Value 1 �
� �
� �
 
Value 2 �
� �
� �
 
Total �� �� 1 

 
In Table 1, �
�, �
�, �
� and �
� are joint proportions, whereas �
 and �
 are marginal proportions. If value 1 and 
value 2 in Table 1 are, respectively, 1 and 0, then �
� is the proportion of 1s that i and j share in the same positions, 
and �
� can be interpreted as the proportion of 0s that i and j share in the same positions. More precisely, if 
sequences i and j are the ratings of u individuals by two observers on the presence or absence of a trait, or the 
presence/absence codings of u species types in two locations, then �
� and �
� can be interpreted as, respectively, the 
proportion of positive matches and negative matches. Instead of two binary sequences, Albatineh et al. [1] consider 
two methods for clustering data, and �
� is the proportion of data points that were placed in the same cluster 
according to methods i and j. Quantity �
 is the proportionof 1s in sequence i. 
If there is no confusion possible, we will use �(�) and �(�) for short, instead of �
� and �
�. Furthermore, many 
similarity coefficients for binary sequences (or 2×2 tables) are defined as ratios. It may occur that the denominator 
of a similarity coefficient has zero value, in which case the value of the coefficient is indeterminate [2,35]. In the 
following we assume that the value of each coefficient S is defined. See Batagelj and Bren [2] and Warrens [35] for 
robust definitions of similarity coefficients for 2×2 tables. 
A straightforward coefficient of similarity is the observed proportion of agreement 
 

 �SM(�) = �(�) + �(�).  

Coefficient�SM(�) is also known as the simple matching coefficient [29]. The subscript of S, for example SM in �SM(�), 
will be used to distinguish the various coefficients. The capital letters reflect the authors to whom the coefficient or 
coefficient family can be attributed [1,31,32,33,35,36]. 

Coefficient �SM(�)is the main member of the parameter family 
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 �GL(�)(�) =
�(�) + �(�)

�(�) + �(�) + �(1 − �(�) − �(�)) =
�(�) + �(�)

� + (1 − �)(�(�) + �(�)),  

where θ > 0 is used to avoid negative values. Coefficient �SM(�) = �GL(�)(1). The Gower-Legendre family �GL(�)(�) was 

first studied in Gower [16] and Gower and Legendre [18, p. 13]. The numerator of �GL(�)(�) is equal to coefficient 

�SM(�), whereas the denominator is θ plus (1 – θ) times coefficient �SM(�). 
A binary sequence can be either a nominal or an ordinal variable. In the latter case a 1 is `more' in a sense than a 0, 

for example, species presence/absence in ecology. Coefficient �SM(�) is a popular coefficient if the sequences are 
nominal. If the data are ordinal, popular choices are the Jaccard coefficient [21] 

 �J(�) =
�(�)

1 − �(�),  

and the Dice-Sørenson coefficient [12,27] 

 �D(�) =
2�(�)
�
 + �� =

2�(�)
1 + �(�) − �(�).  

Coefficients �J(�) and �D(�) are members of parameter family 

 �FG(�)(�) =
�(�)

�(�) + �(1 − �(�) − �(�)) =
�(�)

(1 − �)�(�) + �(1 − �(�)),  

where θ > 0. Coefficient �J(�) = �FG(�)(1), and coefficient �D(�) = �FG(�)( !). The Fichet-Gower family �FG(�)(�) was first 

studied in Fichet [13] and Gower [16]. The numerator of �FG(�)(�) is equal to the proportion of positive matches �(�). 
The denominator of �FG(�)(�) is more complicated. 

A main reason for studying parameter families �GL(�)(�) and �FG(�)(�) is the following property. 
 

Property 1. As noted in [16,18], any two members of parameter family �GL(�)(�), or two members of �FG(�)(�), are 
globally order equivalent [28]. If two coefficients are order equivalent, they are interchangeable with respect to an 

analysis method that is invariant under ordinal transformations. Let us show the property for �FG(�)(�).	 Let �"(�) and 

��(�), and �"(�) and ��(�), denote two versions of respectively �(�) and �(�). We have 

 
�"(�)

(1 − �)�"(�) + �#1 − �"(�)$
≥ ��(�)
(1 − �)��(�) + �#1 − ��(�)$

				⇔ 			 �"(�)
1 − �"(�)

≥ ��(�)
1 − ��(�)

. (1) 

Since inequality (1) does not depend on θ, two members of �FG(�)(�) are globally order equivalent. 
 
3.     n-WAY SIMILARITY COEFFICIENTS 
In this paper, we consider three approaches of formulating n-way similarity coefficients for binary sequences. A 3-
way similarity coefficient �(') on a set of objects E is a function from the Cartesian product E×E×E to the real unit 
interval [0,1] that is symmetric, �(�, �, () = 	�(�, (, �) = 	�(�, �, () = 	�(�, (, �) = �((, �, �) = 	�((, �, �), and satisfies 
�(�, �, () ≤ 	�(�, �, �) = 	1 for all i,j,k in E. The definition of a n-way similarity coefficient is analogous: a function 
�()): +) → [0,1], that satisfies multi-way symmetry [39], and obtains its maximum of unity if the n objects are 
equal. In this paper we sometimes compare a n-way coefficient to one of its special cases, for example, a m-way 
coefficient where 2 ≤ m ≤ n. Throughout the paper it is assumed that the set of m objects is a subset of the set with n 
objects. Thus, �(0) reflects the similarity between m objects, and �()) reflects the similarity between the same m 
objects and n – m additional objects. See also Property 2 at the end of this section. 
In the literature, n-way similarity coefficients are usually defined as functions of the 2-way information. In the case 
of binary sequences, one may typically obtain the necessary 2-way information by constructing all n(n – 1)/2 
pairwise 2×2 tables between the n sequences. The coefficients discussed in Sections 5 and 6 are based on the 
positive and negative matches	�
� and �
�. 
The Bennani-Heiser coefficients discussed in Section 4 are not functions of the 2-way information. For these 
coefficients we must extend the concept of the 2-way or bivariate 2×2 table from Section 2 to a multi-way or n-way 
contingency table. In the 2-way case, the positive and negative matches �(�) and �(�) are the elements of the main 
diagonal of the 2×2 table. Quantities �(�) and �(�) can be interpreted as the proportions of 1s and 0s that two 
sequences share in the same positions. For n binary sequences we define the proportions: 
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�()) =  proportion of 1s that n sequences share in the same positions; 
�()) =  proportion of 0s that n sequences share in the same positions. 
 
The quantities �()) and �()) are the elements of the main diagonal of the n-way contingency table. Quantities �()) 
and �()) have an important property that will repeatedly be used in Sections 5, 6 and 7. 
 
Property 2. We have �(0) ≥ �()) and �(0) ≥ �()) for 2 ≤ m ≤ n, that is, the proportion of 1s (0s) that m sequences 
share in the same positions is always equal or greater than the proportion of 1s (0s) that the m sequences and n – m 
other sequences share in the same positions. 
 
4.    BENNANI-HEISER COEFFICIENTS 
Bennani-Heiser coefficients are n-way similarity coefficients that can be defined using only the quantities �()) and 
�()) defined in Section 3. These n-way formulations generalize certain basic characteristics of the corresponding 2-

way versions. Warrens [36] gave the following generalizations of coefficients �SM(�), �J(�) and �D(�): 
�SM1()) = �()) + �()), �J1()) =

�())
1 − �()) 					and					�D1

()) = 2�())
1 + �()) − �()). 

 

Warrens [36] also gave the following generalizations of parameter families �GL(�)(�) and �FG(�)(�): 
 
 
 

�GL1())(�) = �()) + �())
� + (1 − �)(�()) + �()))  

and 
 
 
 

�FG1())(�) = �())
(1 − �)�()) + �(1 − �())).  

The 3-way coefficient �SM1(')  and 3-way parameter family �FG1(') (�) were first formulated in Bennani-Dosse [4] and 

Heiser and Bennani [19]. It should benoted that the function 1 − �J1()) was already used in Cox et al. [7, p. 200]. The 
latter function is also studied in [39]. 

Jaccard [21] studied the distribution of species of plants in three different Alpine districts. Coefficient �J(�) can be 
interpreted as the number of species types common to two districts, divided by the total number of species types in 

the two districts. The interpretation of coefficient �J1(') is analogous to that of �J(�): the number of species types 
common to three districts, divided by the total number of species types in the three districts. 
Cox et al. [7] pointed out that n-way coefficients may detect similarity where 2-way coefficients fail. We consider 
the following example. 
 
Example 1. Suppose we have the following four binary sequences on ten attributes. 
 

objects attributes 
i 0 1 0 0 1 0 0 1 0 0 
j 0 0 0 0 1 1 0 0 0 1 
k 0 0 0 1 1 0 1 0 0 0 
l 1 1 1 1 0 1 1 1 1 1 

 
The 2-way Jaccard coefficient compares the number of positions where a 1 occurs in both sequences to the total 
number of positions where a 1 occurs in one of the sequences. The 3-way Jaccard coefficient [4,7,19] compares the 
number of positions where a 1 occurs in all three sequences to the total number of positions where a 1 occurs in one 

of the three sequences. For these data, the six 2-way Jaccard coefficients are all equal (�J(�) = 1/5), giving no 
discriminative information about the objects. However, the 3-way Jaccard coefficient between objects i, j and k 

(�J1(') = 1/7) differs from the other three 3-way coefficients (�J1(') = 0). We may conclude that object l is different 
from i, j and k. 
One may also argue that the wrong 2-way coefficient has been specified for analyzing these data. Due to Property 1, 

coefficient �J(�) cannot be replaced by another member of family �FG(�)(�), since the six 2-way coefficients between 
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the four objects are also equal for this other coefficient. This can be seen from replacing the inequality signs in (1) 
by an equality sign. 

To obtain a different outcome of the 2-way data analysis, one should use a different coefficient, for example	�SM(�). 
The 2-way simple matching coefficient compares the number of positions where either a 1 or 0 occurs in both 
sequences to the total number of positions. For these data, the three 2-way simple matching coefficients between i, j 

and k are 	�SM(�)(�, �) = 	�SM(�)(�, () = 	�SM(�)(�, () = 3/5, whereas the three 2-way simple matching coefficients between 

i, j and k on the one hand and l on the other, are	�SM(�)(�, 8) = 	�SM(�)(�, 8) = 	�SM(�)((, 8) = 1/5. Again, we conclude that 
object l is different from i, j and k. 
 

Any two members of parameter family �GL(�)(�) or two members of �FG(�)(�) are globally order equivalent (Property 

1). The n-way generalizations �GL1())(�) and �FG1())(�) preserve Property 1. 
 

Property 3. Two members of family �GL1())(�), or of �FG1())(�), are globally order equivalent. Let us show the property 

for �GL1())(�). Let �"()) and ��()), and �"()) and ��()), denote two versions of respectively �()) and �()). We have 

 
�"()) + �"())

� + (1 − �)(�"()) + �"()))
≥ ��()) + ��())
� + (1 − �)#��()) + ��())$

			⇔ 			 �"()) + �"()) ≥ ��()) + ��()). (2) 

Since inequality (2) does not depend on θ, two members of �GL1())(�) are globally order equivalent. 
 
The following property of Bennani-Heiser coefficients is perhaps the most distinctive. Property 4 is closely related 
to Property 2. 
 
Property 4. Bennani-Heiser coefficients satisfy �(0) ≥ �()) for 2 ≤ m ≤ n (see Section 3), that is, the similarity 
between m sequences is always equal to or greater than the similarity between the m sequences and n – m additional 
sequences (see Example 1). The property characterizes all Bennani-Heiser coefficients in this paper and does not 

depend on the particular definition of similarity. For example, we have both 	�SM1(0) ≥ 	�SM1())  and 	�J1(0) ≥ 	�J1()). 
 
Property 4 has its origin in the axiomatizations of three-way distances presented in [19,22]. Joly and Le Calvé [22] 
require that a three-way distance between three objects is not smaller than the distance between two of them. This 
desideratum is translated to Property 4 by transforming a similarity coefficient into a dissimilarity or distance 
function by taking the complement 1 − �. 
 
5.    ALTERNATIVE n-WAY SIMILARITY COEFFICIENTS 
Instead of using the quantities �()) and �()), which define Bennani-Heiser coefficients, n-way similarity coefficients 
may also be defined using the 2-way information. For example, if �
� is important in the comparison of sequences i 
and j, then we may use �
�, �
9 and ��9 when comparing i, j and k. In this section we consider a class of n-way 
coefficients based on 2-way quantities, that was formulated and investigated in Warrens [32,33]. 

Warrens [33] introduced the following generalizations of coefficients �SM(�) and �D(�) for n binary sequences: 
 
 
 
 

�SM2()) = 2
:(: − 1);(�
� + �
�)

)


<�
  

and 
 
 
 

�D2()) =
2∑ �
�)
<�

(: − 1)∑ �
)

.  

The quantity 2/[:(: − 1)]	in �SM2())  is used to obtain 0 ≤ �SM2()) ≤ 1. Coefficient �SM2())  is the arithmetic mean of the 

:(: − 1)/2 pairwise  �SM(�) = �
� + �
�. 
Warrens [33] shows that after correction for chance, �SM2())  and �D2()) become identical. Under the assumption of two 
different frequency distributions, the cell �
� of the 2×2 table (Section 2) has expectation +#�
�$ = �
��, where �
 
and �� are the marginal proportions corresponding to the cell �
�. If one uses +#�
�$ = �
�� for all :(: − 1)/2 

different 2×2 tables, then �SM2())  and �D2()) become after correction for chance, 
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�P()) =
∑ (�
� − �
��))
<�

?@ 
! ∑ �
)


 − ∑ �
��)

<�

.  

 

Coefficient �P()) is the multi-rater generalization of Cohen's kappa [5] that is discussed and studied in 
[6,20,25,40,41]. 

The heuristics used for formulating �SM2())  and �D2()) may also be used for generalizing parameter families �GL(�)(�) and 

�FG(�)(�). We obtain 
 
 
 

�GL2())(�) =
!

?(?@ )∑ (�
� + �
�))
<�
� + (1 − �) !

?(?@ )∑ (�
� + �
�))
<�
.  

and 
 
 
 

�FG2())(�) = ∑ �
�)
<�
(1 − �)∑ �
�)


<� + �#?(?@ )! − ∑ �
�)

<� $.  

 

Recall that the numerator of �GL(�)(�) is equal to coefficient �SM(�), whereas the denominator is θ plus (1 – θ) times 

coefficient �SM(�) (see Section 2). In the family �GL2())(�) the coefficient �SM(�) is replaced by its n-way extension �SM2())  in 

both the numerator and the denominator. The family �FG2())(�) extends �FG2(�) (�) in a similar way. 

Using the same heuristics to generalize coefficient �J(�), we obtain 
 
 
 
 

�J2()) =
∑ �
�)
<�

?(?@ )
! − ∑ �
�)
<�

.  

Any two members of the 2-way parameter family �GL(�)(�), or two members of �FG(�)(�), are globally order equivalent 

(Property 1). The n-way generalizations �GL2())(�) and �FG2())(�) preserve Property 1, similar to �GL1())(�) and �FG1())(�) 
from the previous section (Property 3). 
 

Property 5. Two members of family �GL2())(�), or of �FG2())(�), are globally order equivalent. Let us show the property 

for �FG2())(�). Let A" and A�, and B" and B�, denote two versions of respectively ∑ �
�)
<�  and ∑ �
�)
<� . We have 

 
A"

(1 − �)A" + �#?(?@ )! − B"$
≥ A�
(1 − �)A� + �#?(?@ )! − B�$

						⇔ 				 A"
?(?@ )

! − B" ≥
A�

?(?@ )
! − B�. (3) 

 

Since inequality (3) does not depend on θ, two members of �FG2())(�) are globally order equivalent. 
 
For Bennani-Heiser coefficients (Section 4), the similarity between m sequences is never smaller than the similarity 
between the m sequences and n – m other sequences (Property 4). The following example shows that the n-way 
coefficients considered in this section do not possess this property. 
 
Example 2. Suppose we have three binary sequences on five attributes: 
 

objects attributes 
i 0 1 0 1 1 
j 1 0 1 0 1 
k 1 0 1 1 1 

 

For these data the three 2-way simple matching coefficients between the three objects are 	�SM(�)(�, �) = 1/5, 

	�SM(�)(�, () = 2/5 and 	�SM(�)(�, () = 4/5. The 3-way simple matching coefficient, 	�SM2(') = 7/15, is the arithmetic 

mean of the three 2-way coefficients. Furthermore, the three 2-way Dice coefficients are 	�D(�)(�, �) = 1/3, 

	�D(�)(�, () = 4/7 and 	�D(�)(�, () = 6/7. The 3-way Dice coefficient 	�D2(') = 3/5. Thus, using the coefficients from 
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this section, the amount of similarity may increase when one increases the number of sequences or objects that are 
compared. 
 
The coefficient families formulated in this section may be compared to the Bennani-Heiser families from the 
previous section. It turns out that coefficients from the two different approaches are bounds of one another. Theorem 

2 shows how the Gower-Legendre families �GL1())(�) and �GL2())(�) are related. In the proof of Theorem 2, we use the 
following lemma. 
 
Lemma 1. Let A, B and θ be positive real numbers. Then 
 
 
 
 

A
� + (1 − �)A ≤

B
� + (1 − �)B 						⟺ 					A ≤ B.  

Theorem 2. �GL1())(�) ≤ �GL2())(�) for all θ > 0. 
Proof: Let 
 
 
 
 

A = �()) + �()),							and								B = 2
:(: − 1);(�
� + �
�)

)


<�
.  

Due to Lemma 1, it must be shown that 
 
 
 
 

:(: − 1)
2 #�()) + �())$ ≤;(�
� + �
�)

)


<�
. (4) 

Inequality (4) follows from Property 2, that is, �
� ≥ �())and �
� ≥ �()). ■ 
 

Theorem 4 specifies how the Fichet-Gower families �FG1())(�) and �FG2())(�) are related. The following lemma is used 
in the proof of Theorem 4. 
 
Lemma 3. Let A, B, F, G and θ be positive real numbers. Then 
 
 
 
 

A
(1 − �)A + �B ≤

F
(1 − �)F + �G 							⟺ 						 AB ≤

F
G.  

Theorem 4. �FG1())(�) ≤ �FG2())(�) for all θ > 0. 
Proof: Let A = �()), B = 1 − �()), and 
 
 
 
 

F =;�
�
)


<�
,							and								G = :(: − 1)

2 −;�
�
)


<�
.  

Due to Lemma 3, it must be shown that 
 
 
 
 

�())
1 − �()) ≤

∑ �
�)
<�
:(: − 1)/2 − ∑ �
�)


<�
. (5) 

Inequality (5) follows from Property 2. ■ 
 
6.    AVERAGES OF 2-WAY COEFFICIENTS 
As shown in the previous section, instead of using the quantities �()) and �()), which define Bennani-Heiser 
coefficients, n-way similarity coefficients may be functions of the 2-way information. The n-way formulations in the 
previous section preserve relations between 2-way coefficients with respect to correction for chance [33]. As an 
alternative approach, we could also formulate n-way coefficients that are functions of the 2-way coefficients 
themselves. There are many functions that can be used to obtain a mean value of n(n – 1)/2 coefficients, for 
example, the geometric and harmonic means or the root mean square. The arithmetic mean is however the most 
commonly used and best understood in statistics. Furthermore, in the context of 3-way distances, the arithmetic 
mean is analogous to the perimeter distance [10,19]. 
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In this section we define n-way coefficients as the arithmetic mean of the n(n – 1)/2 pairwise (2-way) coefficients. 
The arithmetic mean is the most commonly used type of average and is a natural measure of average similarity 

among n objects. Consider the following n-way generalization of the simple matching coefficient �SM(�) for n binary 
sequences: 
 
 
 

�SM3()) = 2
:(: − 1);�SM(�)

)


<�
= 2
:(: − 1);(�
� + �
�).

)


<�
  

 

Coefficient �SM3())  is the arithmetic mean of the n(n – 1)/2 pairwise coefficients that can be formed given n sequences. 

Note that �SM3())  is equivalent to �SM2()) , the n-way generalization of the simple matching coefficient from Section 5. 

We consider the following n-way generalizations of the Jaccard coefficient �J(�) and the Dice coefficient �D(�): 
 
 
 

�J3()) =
2

:(: − 1);
�
�

1 − �
�
)


<�
  

and 
 
 
 

�D3()) =
2

:(: − 1);
2�
�

�
� + 1 − �
� .
)


<�
  

We also have the following n-way generalizations of parameter families �GL(�)(�) and �FG(�)(�): 
 
 
 

�GL3()) = 2
:(: − 1);

�
� + �
�
� + (1 − �)(�
� + �
�)

)


<�
  

and 
 
 
 

�FG3()) = 2
:(: − 1);

�
�
(1 − �)�
� + �(1 − �
�) .

)


<�
  

 
Each n-way coefficient and family is simply the arithmetic mean of all n(n – 1)/2 pairwise coefficients or family 
functions that can be formed given n sequences. 

Any two members of the 2-way parameter family �GL(�)(�), or two members of �FG(�)(�), are globally order equivalent 

(Property 1). The n-way generalizations �GL3())(�) and �FG3())(�) preserve Property 1, similar to families �GL1())(�) and 

�FG1())(�) (Property 3) and families �GL2())(�) and �FG2())(�) (Property 5). 
 

Property 6. Two members of family �GL3())(�) and �FG3())(�), are globally order equivalent. (See also Properties 3 and 
5). The result follows from the fact that the corresponding 2-way coefficient families are globally order equivalent 
(Property 1). 
 
Example 3. In Example 1 we considered a data matrix for which the six 2-way Jaccard coefficients were all equal, 

but one 3-way Jaccard coefficient was different. Members of family �GL2())(�) and �GL3())(�) do not share this 

characteristic. In fact, for given θ, all n-way coefficients are equal if the 2-way coefficients are equal. For �GL3())(�) 
this is by definition. For �GL2())(�) this can be seen as follows. If �
� + �
� = �, we obtain 
 
 
 

�GL2()) = �GL3()) = �
� + (1 − �)�,  

which is a function of �. Families �GL2())(�) and �GL3())(�) are thus not suited for detecting possible higher-order 
relations between the objects that cannot be discovered when one only considers the 2-way information. 
 
Example 4. Suppose we have the following four binary sequences on ten attributes. 
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objects attributes 
i 1 1 0 1 0 0 1 0 0 0 
j 1 0 1 0 1 0 0 0 1 0 
k 0 1 0 0 1 1 0 1 0 0 
l 0 0 1 1 0 1 0 0 0 1 

 

For these data the six 2-way Jaccard coefficients between the four objects areal equal (�J(�) = 1/7). In this section 

the n-way coefficients are arithmetic means of the 2-way coefficients. Therefore, �J(�) = �J3(') = �J3(H) = 1/7, that is, 
all n-way coefficients (n ≥ 2) are equal. The n-way coefficients discussed in this section are functions of the 2-way 
coefficients, and are thus not suited for detecting possible 3-way or higher-order similarity between the objects when 
the 2-way coefficients give no discriminative information. 
 
For Bennani-Heiser coefficients (Section 4), the similarity between m sequences is always equal to or greater than 
the similarity between the m sequences and n – m other sequences (Property 4). The following example shows that 
the n-way coefficients considered in this section do not possess this property. 
 
Example 5. Consider the data in Example 2. For these data the three 2-way simple matching coefficients between the 

three objects are �SM(�)(�, �) = 1/5, �SM(�)(�, () = 2/5 and �SM(�)(�, () = 4/5. The 3-way simple matching coefficient, 

�SM2(') = �SM3(') = 7/15, is the arithmetic mean of the three 2-way coefficients. Furthermore, the three 2-way Dice 

coefficients are �D(�)(�, �) = 1/3, �D(�)(�, () = 4/7 and �D(�)(�, () = 6/7. The 3-way Dice coefficient �D3(') = 37/63, 
is the arithmetic mean of the three 2-way coefficients. Thus, using the coefficients from this section, the amount of 
similarity may increase when one increases the number of sequences or objects that are compared. 
 
The parameter families formulated in this section may be compared to the Bennani-Heiser coefficients from Section 
4. It turns out that coefficients from the two formulations are bounds of one another. Theorem 5 shows how the 

Gower-Legendre families �GL1())(�) and �GL3())(�) are related. Lemma 1 is used in the proof of Theorem 5. 
 

Theorem 5. �GL1())(�) ≤ �GL3())(�) for all θ > 0. 
Proof: The inequality holds if it can be shown that 
 
 
 
 

�()) + �())
� + (1 − �)(�()) + �())) ≤

�
� + �
�
� + (1 − �)(�
� + �
�). (6) 

Let A = �()) + �()) and B = �
� + �
�. Due to Lemma 1, inequality (6) holds if and only if 
 
 
 
 

�()) + �()) ≤ �
� + �
�. (7) 

Inequality (7) follows from Property 2, that is, �
� ≥ �()) and �
� ≥ �()). ■ 
 

Theorem 6 specifies how the Fichet-Gower families �FG1())(�) and �FG3())(�) are related. Lemma 3 is used in the proof 
of Theorem 6. 
 

Theorem 6. �FG1())(�) ≤ �FG3())(�) for all θ > 0. 
Proof: The inequality holds if it can be shown that 
 
 
 
 

�())
(1 − �)�()) + �(1 − �())) ≤

�
�
(1 − �)�
� + �(1 − �
�). (8) 

Let A = �()), B = 1 − �()), F = �
� and G = 1 − �
�. Due to Lemma 3, inequality (8) holds if and only if 
 
 
 
 

�())
1 − �()) ≤

�
�
1 − �
� . (9) 
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Inequality (9) follows from Property 2. ■ 
 
7.    DICE COEFFICIENTS 

In Warrens [36], a central role is played by the Dice coefficient �D(�). Thus far, we considered three n-way 

generalizations of �D(�):  
 �D1()) =

2�())
�()) + 1 − �()) ,																	�D2

()) = 2∑ �
�)
<�
∑ �
�)
<� + ?(?@ )

! − ∑ �
�)
<�
  

and 

�D3()) =
2

:(: − 1);
2�
�

�
� + 1 − �
� .
)


<�
 

The n-way Dice coefficient 
 
 
 

�D4()) =
:�())
∑ �
)


,  

is a fourth generalization of �D(�)considered in Warrens [36]. Coefficient �D4()) does not belong to any of the classes 

considered in Sections 4, 5 or 6. Due to Theorems 4 and 6, we have �D1()) ≤ �D2()) and �D1()) ≤ �D3()), respectively. The 

n-way coefficients �D2()) and �D4()) are related in the following way. 
 

Proposition 7. �D4()) ≤ �D2()). 
Proof: Using the identity 

 (: − 1);�

)


I"
=;#�
� + 1 − �
�$,

)


<�
  

we can write 
 
 
 

�D4()) =
:(: − 1)�())

∑ #�
� + 1 − �
�$)
<�
.  

Since the denominator of �D2()) is equal to the denominator of �D4()), we have �D4()) ≤ �D2()) if and only if 
 
 
 
 

:(: − 1)�())
2 ≤;�
� .

)


<�
 (10) 

Inequality (10) follows from Property 2. This completes the proof. ■ 
 
8.    DISCUSSION 
Pairwise or 2-way similarity coefficients only allow comparison of two objects at a time. Multi-way coefficients (for 
groups of size n ≥ 2) may be used to compare n objects at a time [7,11,26,36,40]. In this paper, we compared three 
definitions of n-way similarity coefficients for n binary sequences. Furthermore, we discussed properties that the 
similarity coefficients may have in general, not just for certain data. All three definitions preserve the globally order 
equivalence of two coefficients (Properties 3, 5 and 6). The Bennani-Heiser coefficients defined in Section 4 possess 
some properties that the n-way coefficients based on 2-way information, considered in Sections 5 and 6, do not 
exhibit. 
First of all, for 2 ≤ m ≤ n, the m-way similarity of m binary sequences is never smaller than the n-way similarity 
between the m sequences and n – m other sequences (Property 4). In general, the amount of similarity decreases as n, 
the number of objects compared, increases. Theoretically, this is considered a desideratum in Joly and Le Calvé [22] 
in the context of distance functions. However, in practice this often means that Bennani-Heiser coefficients have 
(very) small values for high values of n (n = 5, 6) or even moderate values of n (n = 3, 4). The n-way coefficients 
from Section 5 are based on the 2-way information and usually have a value that is intermediate of the 2-way 
similarities between the objects (Example 2). By definition, the value of the arithmetic mean discussed in Section 6 
lies between the values of the 2-way coefficients. Furthermore, we showed that the Bennani-Heiser coefficients are 
bounded from above by both the corresponding n-way coefficients in Section 5 as well as the corresponding n-way 
coefficients in Section 6 (Theorems 2, 4,5 and 6). The n-way coefficients from Sections 5 and 6 thus always provide 
higher values. 
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A main motivation for formulating the Bennani-Heiser coefficients in [36] is that these n-way coefficients may be 
used to detect possible relations between the objects or sequences (Example 1) that cannot be obtained from the 
pairwise or 2-way information. The n-way coefficients from Section 5 and 6 are based on 2-way information. These 
coefficients provide none or little discriminative information when the 2-way coefficients give no discriminative 
information (Examples 3 and 4), and are thus not suited for detecting higher-order relations between the objects. 
In this paper, the different n-way definitions of similarity for binary sequences have only been compared 
theoretically. For future work it should be investigated whether the various definitions also result in different 
outcomes in n-way data analysis, for example, three-way multidimensional scaling or hierarchical clustering 
analysis [4,19,22]. We mention the following two studies. Gower and De Rooij [17] demonstrated that 2-way and 3-
way multidimensional scaling give very similar results if the 3-way dissimilarities are defined on the 2-way 
distances (generalized Euclidean distance, perimeter distance). Thus it appears that 3-way coefficients, when defined 
as functions of the 2-way coefficients, do not give more information than is already present in the 2-way 
coefficients. In contrast, Cox et al. [7] compared different n-way multidimensional scaling analyses (for different n) 

using the complement of the Bennani-Heiser coefficient �J1())(Jaccard coefficient). These authors illustrated that n-
way multidimensional scaling do in fact provide different output and interpretations than ordinary 2-way 
multidimensional scaling. 
In this paper we only considered n-way generalizations of the popular simple matching coefficient, the Jaccard and 
Dice coefficients [36,37], and two n-way families that generalize these three coefficients [18]. Some of the ideas 
presented in this paper can be applied to or may also hold for n-way coefficients not studied here. A variety of 
examples of n-way coefficients for binary sequences can be found in [36,40]. 
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