ON SOME DIFFERENTIAL SANDWICH THEOREMS USING SĂLĂGEAN OPERATOR AND RUSCHEWEYH OPERATOR

Radu Diaconu
Department of Mathematics
University of Pitesti
str. Targul din Vale nr. 1, 110040, Pitesti, Romania
Email: radudyaconu@yahoo.com, radu.diaconu@uamsibiu.ro

ABSTRACT
In this work we define a new operator using the Sălăgean operator and Ruscheweyh operator. Denote by \(SR_{m,n} \) the Hadamard product of the Sălăgean operator \(S^m \) and Ruscheweyh operator \(R^n \), given by \(SR_{m,n} : \mathcal{A} \rightarrow \mathcal{A} \), \(SR_{m,n} f(z) = (S^m * R^n) f(z) \) and \(\mathcal{A}_n = \{ f \in \mathcal{H}(U) : f(z) = z + a_n z^n + a_{n+1} z^{n+1} + \ldots, z \in U \} \) is the class of normalized analytic functions with \(\mathcal{A}_1 = \mathcal{A} \). The purpose of this paper is to introduce sufficient conditions for subordination and superordination involving the operator \(SR_{m,n} \) and also to obtain sandwich-type results.

Keywords: analytic functions, differential operator, differential subordination, differential superordination.
2010 Mathematical Subject Classification: 30C45.

1. INTRODUCTION
Let \(\mathcal{H}(U) \) be the class of analytic function in the open unit disc of the complex plane \(U = \{ z \in \mathbb{C} : |z| < 1 \} \). Let \(\mathcal{H}(a,n) \) be the subclass of \(\mathcal{H}(U) \) consisting of functions of the form \(f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \ldots \). Let \(\mathcal{A}_n = \{ f \in \mathcal{H}(U) : f(z) = z + a_n z^n + a_{n+1} z^{n+1} + \ldots, z \in U \} \) and \(\mathcal{A} = \mathcal{A}_1 \).

Denote by \(K = \left\{ f \in \mathcal{A} : \text{Re} \left(\frac{zf''(z)}{f'(z)} \right) + 1 > 0, z \in U \right\} \), the class of normalized convex functions in \(U \).

Let the functions \(f \) and \(g \) be analytic in \(U \). We say that the function \(f \) is subordinate to \(g \), written \(f \prec g \), if there exists a Schwarz function \(w \), analytic in \(U \), with \(w(0) = 0 \) and \(|w(z)| < 1 \), for all \(z \in U \), such that \(f(z) = g(w(z)) \), for all \(z \in U \). In particular, if the function \(g \) is univalent in \(U \), the above subordination is equivalent to \(f(0) = g(0) \) and \(f(U) \subset g(U) \).

Let \(\psi : \mathbb{C}^2 \times U \rightarrow \mathbb{C} \) and \(h \) be an univalent function in \(U \). If \(p \) is analytic in \(U \) and satisfies the second order differential subordination
\[
\psi(p(z),zp'(z),z^2 p''(z);z) \prec h(z), \quad \text{for } z \in U,
\]
then \(p \) is called a solution of the differential subordination. The univalent function \(q \) is called a dominant of the solutions of the differential subordination, or more simply a dominant, if \(p \prec q \) for all \(p \) satisfying (1). A dominant \(q \) that satisfies \(q \prec q \) for all dominants \(q \) of (1) is said to be the best dominant of (1). The best dominant is unique up to a rotation of \(U \).

Let \(\psi : \mathbb{C}^2 \times U \rightarrow \mathbb{C} \) and \(h \) analytic in \(U \). If \(p \) and \(\psi(p(z),zp'(z),z^2 p''(z);z) \) are univalent and if \(p \) satisfies the second order differential superordination
\[
h(z) \prec \psi(p(z),zp'(z),z^2 p''(z);z), \quad z \in U,
\]
then \(p \) is a solution of the differential superordination (2) (if \(f \) is subordinate to \(F \), then \(F \) is called to be superordinate to \(f \)). An analytic function \(q \) is called a subordinant if \(q \prec p \) for all \(p \) satisfying (2). An
univalent subordinant \(\tilde{q} \) that satisfies \(q \prec \tilde{q} \) for all subordinants \(q \) of (2) is said to be the best subordinant.

Miller and Mocanu [8] obtained conditions \(h, q \) and \(\psi \) for which the following implication holds

\[
h(z) \prec \psi(p(z), zp'(z), z^2 p''(z), z) \Rightarrow q(z) \prec p(z)
\]

For two functions \(f(z) = z + \sum_{j=2}^{\infty} a_j z^j \) and \(g(z) = z + \sum_{j=2}^{\infty} b_j z^j \) analytic in the open unit disc \(U \), the Hadamard product (or convolution product) of \(f(z) \) and \(g(z) \), written as \((f \ast g)(z) \), is defined by

\[
f(z) \ast g(z) = (f \ast g)(z) = z + \sum_{j=2}^{\infty} a_j b_j z^j.
\]

Definition 1.1 (Sălăgean [11]) For \(f \in \mathcal{A} \), and \(n \in \mathbb{N} \), the operator \(S^n \) is defined by \(S^n : \mathcal{A} \to \mathcal{A} \),

\[
S^0 f(z) = f(z),
\]

\[
S^1 f(z) = zf'(z),
\]

\[
\ldots
\]

\[
S^{n+1} f(z) = z \left(S^n f(z)\right), \quad z \in U.
\]

Remark 1.1 If \(f \in \mathcal{A} \), \(f(z) = z + \sum_{j=2}^{\infty} a_j z^j \), then \(S^n f(z) = z + \sum_{j=2}^{\infty} j^n a_j z^j \), \(z \in U \).

Definition 1.2 (Ruscheweyh [10]) For \(f \in \mathcal{A} \) and \(n \in \mathbb{N} \), the operator \(R^n \) is defined by \(R^n : \mathcal{A} \to \mathcal{A} \),

\[
R^0 f(z) = f(z),
\]

\[
R^1 f(z) = zf'(z),
\]

\[
\ldots
\]

\[
(n+1)R^{n+1} f(z) = z \left(R^n f(z)\right) + nR^n f(z), \quad z \in U.
\]

Remark 1.2 If \(f \in \mathcal{A} \), \(f(z) = z + \sum_{j=2}^{\infty} a_j z^j \), then \(R^n f(z) = z + \sum_{j=2}^{\infty} \frac{(n+j-1)!}{n!(j-1)!} a_j z^j \) for \(z \in U \).

Definition 1.3 ([7]) Let \(n, m \in \mathbb{N} \). Denote by \(SR^{m,n} : \mathcal{A} \to \mathcal{A} \) the operator given by the Hadamard product of the generalized Sălăgean operator \(D^n \) and the Ruscheweyh operator \(R^n \),

\[
SR^{m,n} f(z) = \left(S^m \ast R^n\right)f(z), \quad (3)
\]

for any \(z \in U \) and each nonnegative integers \(m, n \).

Remark 1.3 If \(f \in \mathcal{A} \) and \(f(z) = z + \sum_{j=2}^{\infty} a_j z^j \), then \(SR^{m,n} f(z) = z + \sum_{j=2}^{\infty} j^m \frac{(n+j-1)!}{n!(j-1)!} a_j^2 z^j \), \(z \in U \).

Remark 1.4 For \(m = n \), we obtain the Hadamard product \(SR^n \) [1] of the Sălăgean operator \(S^n \) and Ruscheweyh derivative \(R^n \), which was studied in [2], [3].

Using simple computation one obtains the next result.
Proposition 1.1 ([7]) For $m,n \in \mathbb{N}$ we have

$$SR^{m+1,n} f(z) = z(SR^{m,n} f(z))$$

and

$$z(SR^{m,n} f(z)) = (n+1)SR^{m,n+1} f(z) - nSR^{m,n} f(z).$$

The purpose of this paper is to derive the several subordination and superordination results involving a differential operator. Furthermore, we studied the results of M. Darus, K. Al-Shaq [6], Shanmugam, Ramachandran, Darus and Sivasubramanian [12].

In order to prove our subordination and superordination results, we make use of the following known results.

Definition 1.4 [9] Denote by Q the set of all functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where $E(f) = \{\xi \in \partial U : \lim_{z \to \xi} f(z) = \infty\}$, and are such that $f^{'}(\xi) \neq 0$ for $\xi \in \partial U \setminus E(f)$.

Lemma 1.1 [9] Let the function q be univalent in the unit disc U and θ and ϕ be analytic in a domain D containing $q(U)$ with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) = zq^{'}(z)\phi(q(z))$ and $h(z) = \theta(q(z)) + Q(z)$.

Suppose that

1. Q is starlike univalent in U and

2. $Re \left(\frac{zh^{'}(z)}{Q(z)} \right) > 0$ for $z \in U$.

If p is analytic with $p(0) = q(0)$, $p(U) \subseteq D$ and

$$\theta(p(z)) + zp^{'}(z)\phi(p(z)) < \theta(q(z)) + zq^{'}(z)\phi(q(z)),$$

then $p(z) \prec q(z)$ and q is the best dominant.

Lemma 1.2 [5] Let the function q be convex univalent in the open unit disc U and ν and ϕ be analytic in a domain D containing $q(U)$. Suppose that

1. $Re \left(\frac{\nu(q(z))}{\phi(q(z))} \right) > 0$ for $z \in U$ and

2. $\psi(z) = zq^{'}(z)\phi(q(z))$ is starlike univalent in U.

If $p(z) \in \mathcal{H}[q(0),1] \cap Q$, with $p(U) \subseteq D$ and $\nu(p(z)) + zp^{'}(z)\phi(p(z))$ is univalent in U and

$$\nu(q(z)) + zq^{'}(z)\phi(q(z)) \prec \nu(p(z)) + zp^{'}(z)\phi(p(z)),$$

then $q(z) \prec p(z)$ and q is the best subordinant.

2. MAIN RESULTS

Considering $\lambda = 1$ in [4] we obtain the following results.

Theorem 2.1 Let \(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \in \mathcal{H}(U)\), $z \in U$, $f \in \mathcal{A}$, $m,n \in \mathbb{N}$, $\lambda \geq 0$ and let the function $q(z)$ be convex and univalent in U such that $q(0) = 1$. Assume that
\[
\text{Re} \left(1 + \frac{\alpha}{\mu} + 2\beta \frac{q(z)}{\mu} + \frac{zq^{''}(z)}{q(z)} \right) > 0, \quad z \in U, \tag{6}
\]

for \(\alpha, \beta, \mu \in \mathbb{C}, \mu \neq 0, \quad z \in U,\) and

\[
\psi_{\lambda, m}^{n, n}(\alpha, \beta, \mu, z) := (-n\mu + \alpha)\frac{SR_{m+1, n} f(z)}{SR_{m, n} f(z)} + \mu(n+1)^{2} \frac{SR_{m+1, n} f(z)}{SR_{m, n} f(z)} + \mu(n+1)(n+2) \frac{SR_{m+2, n} f(z)}{SR_{m, n} f(z)} + (\beta - \mu) \left(\frac{SR_{m+1, n} f(z)}{SR_{m, n} f(z)} \right)^{2}. \tag{7}
\]

If \(q\) satisfies the following subordination

\[
\psi_{\lambda, m}^{n, n}(\alpha, \beta, \mu, z) \prec \alpha q(z) + \beta (q(z))^2 + \mu \varepsilon q(z), \tag{8}
\]

for \(\alpha, \beta, \mu \in \mathbb{C}, \mu \neq 0\) then

\[
\frac{SR_{m+1, n} f(z)}{SR_{m, n} f(z)} \prec q(z), \quad z \in U, \tag{9}
\]

and \(q\) is the best dominant.

Proof. Let the function \(p\) be defined by \(p(z) := \frac{SR_{m+1, n} f(z)}{SR_{m, n} f(z)}, \quad z \in U, \quad z \neq 0, \quad f \in A.\) The function \(p\) is analytic in \(U\) and \(p(0) = 1.\)

Differentiating this function, with respect to \(z,\) we get

\[
zp^{'}(z) = \frac{z(SR_{m+1, n} f(z))'}{SR_{m, n} f(z)} - \frac{SR_{m+1, n} f(z)}{SR_{m, n} f(z)} \frac{z(SR_{m, n} f(z))'}{SR_{m, n} f(z)} +
\]

\[
(n+1)(n+2) \frac{SR_{m+2, n} f(z)}{SR_{m, n} f(z)} - \left(\frac{SR_{m+1, n} f(z)}{SR_{m, n} f(z)} \right)^{2} +
\]

\[
(n+1)(n+2) \frac{SR_{m+2, n} f(z)}{SR_{m, n} f(z)} - \left(\frac{SR_{m+1, n} f(z)}{SR_{m, n} f(z)} \right)^{2}. \tag{10}
\]

By setting \(\theta(w) := \alpha w + \beta w^2\) and \(\phi(w) := \mu, \quad \alpha, \beta, \mu \in \mathbb{C}, \mu \neq 0\) it can be easily verified that \(\theta\) is analytic in \(\mathbb{C},\phi\) is analytic in \(\mathbb{C} \setminus \{0\}\) and that \(\phi(w) \neq 0, \quad w \in \mathbb{C} \setminus \{0\}.\)

Also, by letting \(Q(z) = zq(z)\phi(q(z)) = \mu \varepsilon q(z),\) we find that \(Q(z)\) is starlike univalent in \(U.\)

Let \(h(z) = \theta(q(z)) + \phi(q(z)) = \alpha q(z) + \beta (q(z))^2 + \mu \varepsilon q(z), \quad z \in U.\)

If we derive the function \(Q,\) with respect to \(z,\) perform calculations, we have

\[
\text{Re} \left(\frac{zh'(z)}{Q(z)} \right) = \text{Re} \left(1 + \frac{\alpha}{\mu} + 2\beta \frac{q(z)}{\mu} + \frac{zq^{''}(z)}{q(z)} \right) > 0.
\]
By using (10), we obtain
\[a \phi(z) + \beta(p(z))^2 + \mu \psi(z) = \]
\[(-n\mu + \alpha)\frac{SR_{m+1,n}^n f(z)}{SR_{m,n}^n f(z)} - \mu(n+1)^2 \frac{SR_{m+1,n}^n f(z)}{SR_{m,n}^n f(z)} + \mu(n+1)(n+2) \frac{SR_{m,n+2}^n f(z)}{SR_{m,n}^n f(z)} + (\beta - \mu) \left(\frac{SR_{m+1,n}^n f(z)}{DS_{m,n}^n f(z)} \right)^2. \]

By using (8), we have
\[a \phi(z) + \beta(p(z))^2 + \mu \psi(z) \prec a \phi(z) + \beta(q(z))^2 + \mu \psi(z). \]

Therefore, the conditions of Lemma 1.1 are met, so we have
\[p(z) \prec q(z), \quad z \in U, \text{ i.e. } \frac{SR_{m+1,n}^n f(z)}{SR_{m,n}^n f(z)} \prec q(z), \]
\[z \in U, \text{ and } q \text{ is the best dominant.} \]

Corollary 2.2 Let \(q(z) = \frac{1 + Az}{1 + Bz} \), \(-1 \leq B < A \leq 1\), \(m, n \in \mathbb{N}, \lambda \geq 0, \quad z \in U. \) Assume that (6) holds. If \(f \in \mathcal{A} \) and
\[\psi_{\lambda}^{m,n}(\alpha, \beta, \mu; z) \prec a \alpha \frac{1 + Az}{1 + Bz} + \beta \left(\frac{1 + Az}{1 + Bz} \right)^2 + \mu \left(A - B \right) z \left(\frac{1 + Az}{1 + Bz} \right)^2, \]
for \(\alpha, \beta, \mu \in \mathbb{C}, \mu \neq 0, \ -1 \leq B < A \leq 1, \) where \(\psi_{\lambda}^{m,n} \) is defined in (7), then
\[\frac{SR_{m+1,n}^n f(z)}{SR_{m,n}^n f(z)} \prec \frac{1 + Az}{1 + Bz}, \]
and \(\frac{1 + Az}{1 + Bz} \) is the best dominant.

Proof. For \(q(z) = \frac{1 + Az}{1 + Bz} \), \(-1 \leq B < A \leq 1, \) in Theorem 2.1 we get the corollary.

Corollary 2.3 Let \(q(z) = \left(\frac{1 + z}{1 - z} \right)^\gamma, m, n \in \mathbb{N}, \lambda \geq 0, z \in U. \) Assume that (6) holds. If \(f \in \mathcal{A} \) and
\[\psi_{\lambda}^{m,n}(\alpha, \beta, \mu; z) \prec a \alpha \left(\frac{1 + z}{1 - z} \right)^\gamma + \beta \left(\frac{1 + z}{1 - z} \right)^{2\gamma} + \mu \left(\frac{2\gamma z}{1 - z^2} \right) \left(\frac{1 + z}{1 - z} \right)^{\gamma - 1}, \]
for \(\alpha, \mu \in \mathbb{C}, \ 0 < \gamma \leq 1, \mu \neq 0, \) where \(\psi_{\lambda}^{m,n} \) is defined in (7), then
\[\frac{SR_{m+1,n}^n f(z)}{SR_{m,n}^n f(z)} \prec \left(\frac{1 + z}{1 - z} \right)^\gamma, \]
and \(\left(\frac{1 + z}{1 - z} \right)^\gamma \) is the best dominant.

Proof. Corollary follows by using Theorem 2.1 for \(q(z) = \left(\frac{1 + z}{1 - z} \right)^\gamma, \ 0 < \gamma \leq 1. \)

Theorem 2.4 Let \(q \) be convex and univalent in \(U, \) such that \(q(0) = 1, \) \(m, n \in \mathbb{N}, \lambda \geq 0. \) Assume that
\[
\Re\left(\frac{q'(z)}{\mu}(\alpha + 2\beta q(z))\right) > 0, \text{ for } \alpha, \mu, \beta \in \mathbb{C}, \mu \neq 0, z \in U. \quad (11)
\]

If \(f \in \mathcal{A}, \quad \frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \in \mathcal{H}[q(0),1] \cap Q \) and \(\psi_{\lambda}^{m,n}(\alpha, \beta, \mu; z) \) is univalent in \(U \), where \(\psi_{\lambda}^{m,n}(\alpha, \beta, \mu; z) \) is as defined in (7), then
\[
\alpha q(z) + \beta(q(z))^2 + \mu \varepsilon q(z) \prec \psi_{\lambda}^{m,n}(\alpha, \beta, \mu; z), \quad z \in U, \quad (12)
\]

implies
\[
q(z) \prec \frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)}, \quad z \in U, \quad (13)
\]

and \(q \) is the best subordinate.

Proof. Let the function \(p \) be defined by \(p(z) := \frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)}, \quad z \in U, \quad z \neq 0, \quad f \in \mathcal{A}. \)

By setting \(v(w) := \alpha v + \beta w^2 \) and \(\phi(w) := \mu \) it can be easily verified that \(v \) is analytic in \(\mathbb{C} \), \(\phi \) is analytic in \(\mathbb{C} \setminus \{0\} \) and that \(\phi(w) \neq 0, \quad w \in \mathbb{C} \setminus \{0\} \).

Since
\[
\frac{v'(q(z))}{\phi(q(z))} = \frac{q'(z)}{\mu}(\alpha + 2\beta q(z)),
\]

it follows that
\[
\Re\left(\frac{v'(q(z))}{\phi(q(z))}\right) = \Re\left(\frac{q'(z)}{\mu}(\alpha + 2\beta q(z))\right) > 0, \quad \text{for } \mu, \xi, \beta \in \mathbb{C}, \quad \mu \neq 0.
\]

By using (12) we obtain
\[
\alpha q(z) + \beta(q(z))^2 + \mu \varepsilon q(z) \prec \alpha q(z) + \beta(q(z))^2 + \mu \dot{q}(z).
\]

Using Lemma 1.2, we have
\[
q(z) \prec p(z) = \frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)}, \quad z \in U,
\]

and \(q \) is the best subordinate.

Corollary 2.5 Let \(q(z) = \frac{1 + Az}{1 + Bz}, \quad -1 \leq B < A \leq 1, \quad m, n \in \mathbb{N}, \quad \lambda \geq 0. \) Assume that (11) holds. If \(f \in \mathcal{A}, \)
\[
\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \in \mathcal{H}[q(0),1] \cap Q \quad \text{and}
\]

\[
\alpha \frac{1 + Az}{1 + Bz} + \beta \left(\frac{1 + Az}{1 + Bz}\right)^2 + \mu \frac{(A - B)z}{(1 + Bz)} \prec \psi_{\lambda}^{m,n}(\alpha, \beta, \mu; z),
\]

for \(\alpha, \mu, \beta \in \mathbb{C}, \quad \mu \neq 0, \quad -1 \leq B < A \leq 1, \) where \(\psi_{\lambda}^{m,n} \) is defined in (7), then
\[
\frac{1 + Az}{1 + Bz} \prec \frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)}
\]

and \(\frac{1 + Az}{1 + Bz} \) is the best subordinate.
Proof. For $q(z) = \frac{1 + A_z}{1 + B_z}$, $-1 \leq B < A \leq 1$ in Theorem 2.4 we get the corollary.

Corollary 2.6 Let $q(z) = \left(\frac{1 + z}{1 - z}\right)^\gamma$, $m, n \in \mathbb{N}$, $\lambda \geq 0$. Assume that (11) holds. If $f \in \mathcal{A}$, $\frac{SR^{m+1,n}f(z)}{SR^{m,n}f(z)} \in \mathcal{H}[q(0),1] \cap Q$ and

$$\alpha \left(\frac{1 + z}{1 - z}\right)^\gamma + \beta \left(\frac{1 + z}{1 - z}\right)^{2\gamma} + \mu \frac{2\gamma z}{1 - z} \left(\frac{1 + z}{1 - z}\right)^{\gamma - 1} < \psi_{m,n}^\alpha (\alpha, \beta, \mu; z),$$

for $\alpha, \mu, \beta \in \mathbb{C}$, $0 < \gamma \leq 1$, $\mu \neq 0$, where $\psi_{m,n}^\alpha$ is defined in (7), then

$$\left(\frac{1 + z}{1 - z}\right)^\gamma < \frac{SR^{m+1,n}f(z)}{SR^{m,n}f(z)}$$

and $\left(\frac{1 + z}{1 - z}\right)^\gamma$ is the best subordinant.

Proof. Corollary follows by using Theorem 2.4 for $q(z) = \left(\frac{1 + z}{1 - z}\right)^\gamma$, $0 < \gamma \leq 1$.

Combining Theorem 2.1 and Theorem 2.4, we state the following sandwich theorem.

Theorem 2.7 Let q_1 and q_2 be analytic and univalent in U such that $q_1(z) \neq 0$ and $q_2(z) \neq 0$, for all $z \in U$, with $zq_1(z)$ and $zq_2(z)$ being starlike univalent. Suppose that q_1 satisfies (6) and q_2 satisfies (11). If $f \in \mathcal{A}$, $\frac{SR^{m+1,n}f(z)}{SR^{m,n}f(z)} \in \mathcal{H}[q(0),1] \cap Q$ and $\psi_{m,n}^\alpha (\alpha, \beta, \mu; z)$ is as defined in (7) univalent in U, then

$$\alpha q_1(z) + \beta q_2(z) > \psi_{m,n}^\alpha (\alpha, \beta, \mu; z) > \alpha q_1(z) + \beta q_2(z),$$

for $\alpha, \mu, \beta \in \mathbb{C}$, $\mu \neq 0$, implies

$$q_1(z) < \frac{SR^{m+1,n}f(z)}{SR^{m,n}f(z)} < q_2(z), \quad \delta \in \mathbb{C}, \delta \neq 0,$$

and q_1 and q_2 are respectively the best subordinant and the best dominant.

For $q_1(z) = \frac{1 + A_2z}{1 + B_2z}$, $q_2(z) = \frac{1 + A_2z}{1 + B_2z}$, where $-1 \leq B_2 < B_1 < A_1 < A_2 \leq 1$, we have the following corollary.

Corollary 2.8 Let $m, n \in \mathbb{N}$, $\lambda \geq 0$. Assume that (6) and (11) hold for $q_1(z) = \frac{1 + A_2z}{1 + B_2z}$ and $q_2(z) = \frac{1 + A_2z}{1 + B_2z}$, respectively. If $f \in \mathcal{A}$, $\frac{SR^{m+1,n}f(z)}{SR^{m,n}f(z)} \in \mathcal{H}[q(0),1] \cap Q$ and

$$\alpha \frac{1 + A_2z}{1 + B_2z} + \beta \left(\frac{1 + A_2z}{1 + B_2z}\right)^2 + \mu \frac{(A_1 - B_1)z}{(1 + B_2z)^2} < \psi_{m,n}^\alpha (\alpha, \beta, \mu; z)$$

for $\alpha, \mu, \beta \in \mathbb{C}$, $\mu \neq 0$,
\[\alpha \frac{1 + A_z z}{1 + B_z z} + \beta \left(\frac{1 + A_z z}{1 + B_z z} \right)^2 + \mu \frac{(A_z - B_z) z}{(1 + B_z z)^2}, \]

for \(\alpha, \mu, \beta \in \mathbb{C}, \mu \neq 0, \ -1 \leq B_z \leq B_1 < A_z \leq \lambda \leq 1, \) where \(\psi_{\lambda}^{m,n} \) is defined in (7), then

\[\frac{1 + A_z z}{1 + B_z z} < \frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} < \frac{1 + A_z z}{1 + B_z z}, \]

hence \(\frac{1 + A_z z}{1 + B_z z} \) and \(\frac{1 + A_z z}{1 + B_z z} \) are the best subordinant and the best dominant, respectively.

Theorem 2.9 Let \(\left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} \in \mathcal{H}(U), f \in \mathcal{A}, z \in U, \delta \in \mathbb{C}, \delta \neq 0, m,n \in \mathbb{N}, \lambda \geq 0 \) and let the function \(q(z) \) be convex and univalent in \(U \) such that \(q(0) = 1, z \in U. \) Assume that

\[\text{Re} \left(\frac{\alpha + \beta}{\beta} + \frac{z q(z)}{q(z)} \right) > 0, \]

(14)

for \(\alpha, \beta \in \mathbb{C}, \beta \neq 0, z \in U, \) and

\[\psi_{\lambda}^{m,n}(\alpha, \beta; z) := \left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} (\alpha - n \delta \beta - \delta \beta (n+1)^2 \frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} + \delta \beta (n+1)(n+2) \frac{\text{SR}^{m+2,n} f(z)}{\text{SR}^{m+1,n} f(z)} - \delta \beta \frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)}) \]

(15)

If \(q \) satisfies the following subordination

\[\psi_{\lambda}^{m,n}(\alpha, \beta; z) < \alpha q(z) + \beta z q(z), \]

(16)

for \(\alpha, \beta \in \mathbb{C}, \beta \neq 0, z \in U, \) then

\[\left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} < q(z), z \in U, \delta \in \mathbb{C}, \delta \neq 0, \]

(17)

and \(q \) is the best dominant.

Proof. Let the function \(p \) be defined by \(p(z) := \left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta}, z \in U, z \neq 0, f \in \mathcal{A}. \) The function \(p \) is analytic in \(U \) and \(p(0) = 1. \)

We have \(z p^\prime(z) = \delta \left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} \frac{\text{SR}^{m,n} f(z)}{\text{SR}^{m,n} f(z)} \left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} = \]

\[\delta \left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} \frac{\text{SR}^{m,n} f(z)}{\text{SR}^{m,n} f(z)} \left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} \frac{\text{SR}^{m,n} f(z)}{\text{SR}^{m,n} f(z)} \left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} \]

By using the identity (4) and (5), we obtain

\[z p^\prime(z) = \delta \left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} \frac{\text{SR}^{m,n} f(z)}{\text{SR}^{m,n} f(z)} \left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} \frac{\text{SR}^{m,n} f(z)}{\text{SR}^{m,n} f(z)} \left(\frac{\text{SR}^{m+1,n} f(z)}{\text{SR}^{m,n} f(z)} \right)^{\delta} \]
\[(n+1)^2 \left\{ \frac{SR^{m,n+1} f(z)}{SR^{m,n} f(z)} + (n+1)(n+2) \frac{SR^{m,n+2} f(z)}{SR^{m,n} f(z)} - \left(\frac{SR^{m,n+1} f(z)}{SR^{m,n} f(z)} \right)^2 \right\} - \frac{SR^{m,n+1} f(z)}{SR^{m,n} f(z)} \right\} \]

so, we obtain

\[zp'(z) = \delta \left(\frac{SR^{m,n+1} f(z)}{SR^{m,n} f(z)} \right) \left[-n - \right] \]

\[(n+1)^2 \left\{ \frac{SR^{m,n+1} f(z)}{SR^{m,n+1} f(z)} + (n+1)(n+2) \frac{SR^{m,n+2} f(z)}{SR^{m,n} f(z)} - \frac{SR^{m,n+1} f(z)}{SR^{m,n} f(z)} \right\} \]

By setting \(\theta(w) := \alpha w \) and \(\phi(w) := \beta \), it can be easily verified that \(\theta \) is analytic in \(\mathbb{C} \), \(\phi \) is analytic in \(\mathbb{C} \setminus \{0\} \) and that \(\phi(w) \neq 0, \ w \in \mathbb{C} \setminus \{0\} \).

Also, by letting \(Q(z) = \frac{zq}{\phi(q(z))} = \beta q(z) \), we find that \(Q(z) \) is starlike univalent in \(U \).

Let \(h(z) = \theta(q(z)) + Q(z) = \alpha q(z) + \beta q(z) \).

We have \(\text{Re} \left(\frac{zh(z)}{Q(z)} \right) = \text{Re} \left(\frac{\alpha + \beta}{\beta} + \frac{zq(z)}{q(z)} \right) > 0 \).

By using (19), we obtain \(\alpha p(z) + \beta z p'(z) = \left(\frac{SR^{m,n+1} f(z)}{SR^{m,n} f(z)} \right) \left[\alpha - n \beta^2 - \right] \)

\[\delta \beta (n+1)^2 \left(\frac{SR^{m,n+1} f(z)}{SR^{m,n+1} f(z)} + \delta \beta (n+1)(n+2) \frac{SR^{m,n+2} f(z)}{SR^{m,n} f(z)} - \delta \beta \frac{SR^{m,n+1} f(z)}{SR^{m,n} f(z)} \right) \]

By using (16), we have \(\alpha p(z) + \beta z p'(z) < \alpha q(z) + \beta q(z) \).

From Lemma 1.1, we have \(p(z) < q(z) \), \(z \in U \), i.e. \(\left(\frac{SR^{m,n+1} f(z)}{SR^{m,n} f(z)} \right)^{\delta} < q(z) \), \(z \in U, \delta \in \mathbb{C}, \delta \neq 0 \) and \(q \) is the best dominant.

Corollary 2.10 Let \(q(z) = \frac{1 + Az}{1 + Bz} \), \(z \in U, \ -1 \leq B < A \leq 1, \ m, n \in \mathbb{N}, \lambda \geq 0 \). Assume that (14) holds. If \(f \in \mathcal{A} \) and

\[\psi^{m,n}_\lambda(\alpha, \beta; z) < \alpha \frac{1 + Az}{1 + Bz} + \beta \frac{(A-B)z}{(1+Bz)^2}, \]

for \(\alpha, \beta \in \mathbb{C}, \beta \neq 0, \ -1 \leq B < A \leq 1 \), where \(\psi^{m,n}_\lambda \) is defined in (15), then

\[\left(\frac{SR^{m,n+1} f(z)}{SR^{m,n} f(z)} \right)^{\delta} < \frac{1 + Az}{1 + Bz}, \ \delta \in \mathbb{C}, \delta \neq 0, \]

and \(\frac{1 + Az}{1 + Bz} \) is the best dominant.
Proof. For \(q(z) = \frac{1 + Az}{1 + Bz} \), \(-1 \leq B < A \leq 1\), in Theorem 2.9 we get the corollary.

Corollary 2.11 Let \(q(z) = \left(\frac{1 + z}{1 - z}\right)^\gamma \), \(m, n \in \mathbb{N}, \ \lambda \geq 0 \). Assume that (14) holds. If \(f \in \mathcal{A} \) and

\[
\psi_{\lambda}^{m,n}(\alpha, \beta, \mu; z) < \alpha \left(\frac{1 + z}{1 - z}\right)^\gamma + \beta \frac{2\gamma z}{1 - z^2} \left(\frac{1 + z}{1 - z}\right)^{\gamma - 1},
\]

for \(\alpha, \beta \in \mathbb{C}, \ 0 < \gamma \leq 1, \ \beta \neq 0 \), where \(\psi_{\lambda}^{m,n} \) is defined in (15), then

\[
\left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)}\right)^\delta < \left(\frac{1 + z}{1 - z}\right)^\gamma, \ \delta \in \mathbb{C}, \delta \neq 0,
\]

and \(\left(\frac{1 + z}{1 - z}\right)^\gamma \) is the best dominant.

Proof. Corollary follows by using Theorem 2.9 for \(q(z) = \left(\frac{1 + z}{1 - z}\right)^\gamma, \ 0 < \gamma \leq 1 \).

Theorem 2.12 Let \(q \) be convex and univalent in \(U \) such that \(q(0) = 1 \). Assume that

\[\text{Re}\left(\frac{\alpha}{\beta} q'(z)\right) > 0, \text{ for } \alpha, \beta \in \mathbb{C}, \beta \neq 0. \tag{20}\]

If \(f \in \mathcal{A}, \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)}\right)^\delta \in \mathcal{H}[q(0),1] \cap Q \) and \(\psi_{\lambda}^{m,n}(\alpha, \beta; z) \) is univalent in \(U \), where \(\psi_{\lambda}^{m,n}(\alpha, \beta; z) \) is as defined in (15), then

\[\alpha q(z) + \beta z q'(z) < \psi_{\lambda}^{m,n}(\alpha, \beta; z) \tag{21}\]

implies

\[q(z) < \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)}\right)^\delta, \ \delta \in \mathbb{C}, \delta \neq 0, \ z \in U, \tag{22}\]

and \(q \) is the best subordinant.

Proof. Let the function \(p \) be defined by \(p(z) := \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)}\right)^\delta, \ z \in U, \ z \neq 0, \ \delta \in \mathbb{C}, \delta \neq 0, \ f \in \mathcal{A} \).

The function \(p \) is analytic in \(U \) and \(p(0) = 1 \).

By setting \(\nu(w) := \alpha w \) and \(\phi(w) := \beta \) it can be easily verified that \(\nu \) is analytic in \(\mathbb{C} \), \(\phi \) is analytic in \(\mathbb{C} \setminus \{0\} \) and that \(\phi(w) \neq 0, \ w \in \mathbb{C} \setminus \{0\} \).

Since \(\frac{\nu'(q(z))}{\phi(q(z))} = \frac{\alpha}{\beta} q'(z) \), it follows that \(\text{Re}\left(\frac{\nu'(q(z))}{\phi(q(z))}\right) = \text{Re}\left(\frac{\alpha}{\beta} q'(z)\right) > 0, \) for \(\alpha, \beta \in \mathbb{C}, \beta \neq 0 \).

Now, by using (21) we obtain
\[\alpha q(z) + \beta q'(z) \prec \alpha q(z) + \beta q'(z), \quad z \in U. \]

From Lemma 1.2, we have
\[q(z) \prec p(z) = \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \right)^\delta, \quad z \in U, \delta \in \mathbb{C}, \delta \neq 0, \]
and \(q \) is the best subordinate.

Corollary 2.13 Let \(q(z) = \frac{1 + A z}{1 + B z}, \quad -1 \leq B < A \leq 1, \quad z \in U, \ m, n \in \mathbb{N}, \ \lambda \geq 0. \) Assume that (20) holds. If
\[f \in \mathcal{A}, \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \right)^\delta \in \mathcal{H}[q(0),1] \cap Q, \ \delta \in \mathbb{C}, \ \delta \neq 0 \]
and
\[\alpha \frac{1 + A z}{1 + B z} + \beta \frac{(A-B)z}{(1+Bz)^2} \prec \psi^m_n(\alpha, \beta; z), \]
for \(\alpha, \beta \in \mathbb{C}, \ \beta \neq 0, \ -1 \leq B < A \leq 1, \) where \(\psi^m_n \) is defined in (15), then
\[\frac{1 + A z}{1 + B z} \prec \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \right)^\delta, \delta \in \mathbb{C}, \delta \neq 0, \]
and \(\frac{1 + A z}{1 + B z} \) is the best subordinate.

Proof. For \(q(z) = \frac{1 + A z}{1 + B z}, \quad -1 \leq B < A \leq 1, \) in Theorem 2.12 we get the corollary.

Corollary 2.14 Let \(q(z) = \left(\frac{1 + z}{1 - z} \right)^\gamma, \ m, n \in \mathbb{N}, \ \lambda \geq 0. \) Assume that (20) holds. If \(f \in \mathcal{A}, \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \right)^\delta \in \mathcal{H}[q(0),1] \cap Q \) and
\[\alpha \left(\frac{1 + z}{1 - z} \right)^\gamma + \beta \frac{2z}{1 - z^2} \left(\frac{1 + z}{1 - z} \right)^{\gamma-1} \prec \psi^m_n(\alpha, \beta, \mu; z), \]
for \(\alpha, \beta \in \mathbb{C}, \ \beta \neq 0,
0 < \gamma \leq 1, \) where \(\psi^m_n \) is defined in (15), then
\[\left(\frac{1 + z}{1 - z} \right)^\gamma \prec \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \right)^\delta, \delta \in \mathbb{C}, \delta \neq 0, \]
and \(\left(\frac{1 + z}{1 - z} \right)^\gamma \) is the best subordinate.

Proof. Corollary follows by using Theorem 2.12 for \(q(z) = \left(\frac{1 + z}{1 - z} \right)^\gamma, \) \(0 < \gamma \leq 1. \)

Combining Theorem 2.9 and Theorem 2.12, we state the following sandwich theorem.

Theorem 2.15 Let \(q_1 \) and \(q_2 \) be convex and univalent in \(U \) such that \(q_1(z) \neq 0 \) and \(q_2(z) \neq 0, \) for all
\(z \in U \). Suppose that \(q_1 \) satisfies (14) and \(q_2 \) satisfies (20). If \(f \in \mathcal{A} \), \(\left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \right)^{\delta} \in \mathcal{H}[q(0),1] \cap Q \), \(\delta \in \mathbb{C}, \delta \neq 0 \) and \(\psi_{\lambda}^{m,n}(\alpha, \beta; z) \) is as defined in (15) univalent in \(U \), then
\[
\alpha q_1(z) + \beta \xi q_1(z) < \psi_{\lambda}^{m,n}(\alpha, \beta; z) \prec \alpha q_2(z) + \beta \xi q_2(z),
\]
for \(\alpha, \beta \in \mathbb{C}, \beta \neq 0 \), implies
\[
q_1(z) \prec \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \right)^{\delta} \prec q_2(z), \ z \in U, \delta \in \mathbb{C}, \delta \neq 0,
\]
and \(q_1 \) and \(q_2 \) are respectively the best subordinate and the best dominant.

For \(q_1(z) = \frac{1 + A_1 z}{1 + B_1 z} \) and \(q_2(z) = \frac{1 + A_2 z}{1 + B_2 z} \), where \(-1 \leq B_2 < B_1 < A_1 < A_2 \leq 1\), we have the following corollary.

Corollary 2.16 Let \(m, n \in \mathbb{N} \), \(\lambda \geq 0 \). Assume that (14) and (20) hold for \(q_1(z) = \frac{1 + A_1 z}{1 + B_1 z} \) and
\[
q_2(z) = \frac{1 + A_2 z}{1 + B_2 z}, \text{ respectively. If } f \in \mathcal{A}, \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \right)^{\delta} \in \mathcal{H}[q(0),1] \cap Q \text{ and}
\]
\[
\alpha \frac{1 + A_2 z}{1 + B_2 z} + \beta \frac{(A_1 - B_1)^2 z}{(1 + B_1 z)^2} \prec \psi_{\lambda}^{m,n}(\alpha, \beta; z), \ z \in U,
\]
for \(\alpha, \beta \in \mathbb{C}, \beta \neq 0 \), \(-1 \leq B_2 \leq B_1 < A_1 \leq A_2 \leq 1\), where \(\psi_{\lambda}^{m,n} \) is defined in (7), then
\[
\frac{1 + A_1 z}{1 + B_1 z} \prec \left(\frac{SR^{m+1,n} f(z)}{SR^{m,n} f(z)} \right)^{\delta} \prec \frac{1 + A_2 z}{1 + B_2 z}, \ z \in U, \delta \in \mathbb{C}, \delta \neq 0,
\]
hence \(\frac{1 + A_1 z}{1 + B_1 z} \) and \(\frac{1 + A_2 z}{1 + B_2 z} \) are the best subordinate and the best dominant, respectively.

ACKNOWLEDGEMENT
This work was supported by the strategic project POSDRU/159/1.5/S/138963 - "PERFORM".

REFERENCES

[5]. T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math., Vol. 35, No. 2,
287-292.

