SENSITIVITY ANALYSIS OF TREATMENT AND COUNSELING IN A CO INFECTION MODEL OF HIV/AIDS, TUBERCULOSIS AND MALARIA

Ochieng Ombaka
Physical Sciences Department, Chukka University, Kenya

ABSTRACT

This study presents a co infection deterministic model defined by a system of ordinary differential equations for HIV/AIDS, malaria and tuberculosis. The model is analyzed to investigate the potential impact of counseling and treatment on disease progression by carrying out sensitivity analysis of the reproduction number with respect to counseling and treatment. The sensitivity indices of the reproduction numbers with respect to treatment and counseling for the HIV/AIDS individuals showed that counseling is the most sensitive parameter in controlling the co infections.

Keywords: HIV/AIDS - TB and Malaria, equilibria, stability, bifurcation, sensitivity, counseling, treatment.

1. INTRODUCTION

Sensitivity analysis on mathematical disease modeling investigates the potential impact of the model parameters on disease progression by computing the partial derivatives of the reproduction number \(R_0 \) with respect to the parameters. The basic reproduction number \(R_0 \) is defined as the average number of secondary infections an infectious individual would cause over his infectious period in an entirely susceptible population. When \(R_0 < 1 \); then an infectious individual is causing, on average, less than one new infection and thus the disease does not invade the population. On the other hand, when \(R_0 > 1 \) then an infectious individual is causing, on average, more than one new infection and thus the disease invades and persist in the population. HIV/AIDS remains one of the leading causes of death in the world with its effects most devastating in sub Saharan Africa. One of the key factors that fuels the high incidence of HIV/AIDS in Sub Saharan Africa is its dual infection with malaria and tuberculosis [16].

Audu et al. [4] investigated the possible impact of co infections of tuberculosis and malaria on the CD4+ cell counts of HIV/AIDS patients and established the following: The healthy control group recorded a median CD4+ cell counts of 789 cells/ \(\mu l \) (789 cells per mm\(^3\) of blood); subjects infected with HIV/AIDS only recorded a median CD4+ cell counts of 386 cell/ \(\mu l \); subjects co infected with HIV/AIDS and TB recorded a median CD4+ cell counts of 268 cell/ \(\mu l \); subjects co infected with HIV/AIDS and malaria recorded a median CD4+ cell counts of 211 cell/ \(\mu l \) and those co infected with HIV/AIDS, malaria and TB recorded the lowest median CD4+ cell counts of 182 cell/\(\mu l \).

This study explores the joint dynamics of the simultaneous co infections of HIV/AIDS, TB and malaria to investigate the potential impact of counseling and treatment on disease progression.

2. MODEL FORMULATION AND DESCRIPTION

To study the dynamics of HIV/AIDS, malaria and TB co infection, a deterministic model is formulated described by a system of ordinary differential equations. The model sub-divide the human population into the following epidemiological classes: \(S_H(t) \) - Susceptible population at time \(t \), \(I_M(t) \) - Malaria infectives at time \(t \), \(I_H(t) \) - HIV cases at time \(t \), \(I_A(t) \) - AIDS cases at time \(t \), \(I_T(t) \) - TB cases at time \(t \), \(I_{HMT}(t) \) - Those co infected with malaria and HIV at time \(t \), \(I_{AM}(t) \) - Those co infected with malaria and AIDS at time \(t \), \(I_{MT}(t) \) - Those co infected with malaria and TB at time \(t \), \(I_{HT}(t) \) - Those co infected with HIV and TB at time \(t \), \(I_{AT}(t) \) - Those co infected with AIDS and TB at time \(t \), \(I_{HMT}(t) \) - Those co infected with HIV, Malaria and TB at time \(t \), \(I_{AMT}(t) \) - Those co infected with AIDS, Malaria and TB at time \(t \). The total human population \((N_H(t)) \) is therefore denoted by:

\[
N_H(t) = S_H(t) + I_M(t) + I_H(t) + I_A(t) + I_T(t) + I_{HMT}(t) + I_{AM}(t) + I_{MT}(t) + I_{HT}(t) + I_{AT}(t) + I_{HMT}(t) + I_{AMT}(t).
\]

The vector (mosquito) population at time \(t \) denoted by \(N_V(t) \) is sub-divided into the following classes: \(S_V(t) \) - Vector susceptibles at time \(t \), \(I_V(t) \) - Vector infectives at time \(t \). The total vector population \(N_V(t) \) is given by:

\[
N_V(t) = S_V(t) + I_V(t).
\]
2.1 DEFINITION OF PARAMETERS

It is assumed that susceptible humans are recruited into the population at a constant rate either by birth or recovery from malaria and TB. They acquire infection with either HIV/AIDS, malaria or TB and move to the infectious classes. Susceptible mosquitoes are recruited into the mosquito population at a constant rate. They acquire malaria infection following a blood meal feeding on infected malaria humans, becomes infectious and move to the infectious class.

The recruitment rate of humans into the susceptible population is denoted by \(\Lambda_H \) while that of vectors (mosquitoes) is denoted by \(\Lambda_V \) and are both assumed to be constant. The natural death rate of humans is given by \(d_n \) while that of vectors is given by \(d_v \). The death rates due to AIDS, malaria and TB in humans are \(d_A \), \(d_M \) and \(d_T \) respectively. The parameters \(d_{am} \), \(d_{at} \), \(d_{mt} \) and \(d_{amt} \) account for the combined death rates in the \(I_{AM} \), \(I_{MT} \), \(I_{AT} \) and \(I_{AMT} \) classes respectively. The parameters \(r_m \) and \(r_t \) are the recovery rates from malaria and TB respectively due to effective treatment. It is assumed that the recovered individuals do not acquire temporary immunity to either or both diseases thus become susceptible again. The model assumes that susceptible humans cannot simultaneously get infected with malaria, HIV/AIDS and TB since the transmission mechanics are completely different for the three diseases. The model further assumes that humans acquire HIV/AIDS through sexual contacts between an infective and a susceptible.

The average force of infection for HIV/AIDS denoted \(\lambda_{ah} \) is given by

\[
\lambda_{ah} = \frac{\beta_a (1 - \delta) c_1 (I_H + I_{HM} + I_{HT})}{N_H} \quad (2.1.1)
\]

where \(\beta_a \) is the average transmission probability of HIV/AIDS between an infective and a susceptible per sexual contact and \(c_1 \) is the per capita number of sexual contacts of susceptible humans with HIV/AIDS infected individuals per unit time. The parameter \(\delta \) measures the effectiveness of counseling through condom use and a reduction in the number of sexual partners, where \(0 \leq \delta \leq 1 \). Effective counseling reduces the value of the parameter \(c_1 \).

The model assumes that the classes \(I_{HMT}, I_A, I_{AM}, I_{AT} \) and \(I_{AMT} \) do not transmit the virus due to acute ill health and noticeable AIDS symptoms. Define \(\alpha_1 \) as the number of bites per human per mosquito (biting rate of mosquitoes), \(\beta_m \) as the transmission probability of malaria in humans per bite thus the force of infection with malaria for humans, denoted \(\lambda_{mh} \) is given by

\[
\lambda_{mh} = \frac{\alpha_1 \beta_m I_V}{N_H} \quad (2.1.2)
\]

whereas the average force of infection with malaria for vectors, denoted \(\lambda_{mv} \), is given by

\[
\lambda_{mv} = \frac{\alpha_1 \beta_v I_M + I_{HM} + I_{MT} + I_{AM} + I_{HMT} + I_{AMT}}{N_H} \quad (2.1.3)
\]

where \(\beta_v \) is the transmission probability of malaria in vectors from any infected human. Finally the average force of infection for TB denoted \(\lambda_{th} \) is given by

\[
\lambda_{th} = \frac{\beta_t c_2 (I_T + I_{HT} + I_{MT} + I_{HMT} + I_{AMT} + I_{AT})}{N_H} \quad (2.1.4)
\]

where \(\beta_t \) is the transmission probability of TB in humans and \(c_2 \) is the average per capita contact rate of susceptible humans with TB infected individuals. The rate of progression from HIV to AIDS for the untreated HIV cases is \(p \). The parameters \(\theta_{1p} \), \(\theta_{2p} \) and \(\theta_{3p} \) account for increased rates of progression to AIDS for individuals co infected with HIV - TB, HIV - malaria and HIV malaria - TB respectively where \(\theta_1 < \theta_2 < \theta_3 \).

Define \(\alpha \) as the proportion of the HIV/AIDS infectives receiving effective treatment. This involves the administration of ARV’S that keeps the HIV patients from progressing to AIDS while transferring the AIDS patients back to the HIV classes. The modification parameters \(e_{hm}^H \), \(e_{h}^H \) and \(e_{hm}^H \) account for the reduced susceptibility to infection with HIV for individuals in the \(I_M, I_T \) and the \(I_{MT} \) classes respectively due to reduced sexual activity as a
result of ill health where \(e_m^h < 1 \), \(e_m^h < 1 \), \(e_m^b < 1 \), \(e_m^b < 1 \). The parameters \(e_m^a, e_m^h, e_m^a, e_m^h \) account for the increased susceptibility to infection for malaria for individuals already infected with AIDS, HIV, HIV - TB and AIDS - TB respectively due to suppressed immune system where \(e_m^a > 1 \), \(e_m^h > 1 \), \(e_m^a > 1 \), \(e_m^h > 1 \). It is also clear that \(e_m^a < e_m^a \) and \(e_m^h < e_m^h \). The parameters \(e_h^a, e_h^h, e_h^a, e_h^h \) and \(e_h^a, e_h^h \) account for the increased susceptibility to infection with TB for individuals already infected with HIV, AIDS, HIV - malaria and AIDS - malaria respectively due to suppressed immune system where \(e_h^a > 1 \), \(e_h^a > 1 \), \(e_h^a > 1 \), \(e_h^a > 1 \). Again \(e_h^a < e_h^a \) and \(e_h^a < e_h^a \). Malaria and TB does not lead to the depletion of the CD4+ cell counts, however their association with HIV/AIDS leads to a significant reduction in the CD4+ cell counts within an individual leading to faster progression to AIDS. Combining all the aforementioned assumptions and definitions, the model for the transmission dynamics of HIV/AIDS, TB and malaria is given by the following system of differential equations.

2.2 THE MODEL EQUATIONS

\[
\frac{dS_H(t)}{dt} = \Lambda_H + r_m I_M(t) + r_t I_T(t) - \lambda_{ah} S_H(t) - \lambda_{mh} S_H(t) - d_m S_H(t)
\]

\[
\frac{dI_M(t)}{dt} = \lambda_{mh} S_H(t) + r_t I_M(t) - r_m I_M(t) - e_m^h \lambda_{ah} I_M(t) - d_m I_M(t)
\]

\[
\frac{dI_H(t)}{dt} = \lambda_{ah} S_H(t) + r_m I_H(t) + r_t I_HT(t) - (1 - \alpha)p I_H(t)
\]

\[
\frac{dI_A(t)}{dt} = (1 - \alpha)p I_H(t) + r_m I_AM(t) + r_t I_MT(t) - e_m^a \lambda_{mh} I_A(t)
\]

\[
\frac{dI_T(t)}{dt} = \lambda_{dh} I_A(t) - d_d I_A(t) - e_d^h \lambda_{th} I_T(t) - d_d I_T(t)
\]

\[
\frac{dI_MH(t)}{dt} = e_m^h \lambda_{mh} I_H(t) + e_m^a \lambda_{ah} I_M(t) + r_t I_MH(t) - r_m I_MH(t) - e_m^h \lambda_{th} I_MH(t) + \alpha I_AM(t) - d_m I_MH(t) - (1 - \alpha) \theta p I_MH(t) - d_m I_MH(t)
\]

\[
\frac{dI_AM(t)}{dt} = (1 - \alpha) \theta p I_MH(t) + e_m^a \lambda_{mh} I_A(t) - r_m I_AM(t) - d_m I_AM(t) - \alpha I_AM(t)
\]

\[
\frac{dI_MT(t)}{dt} = \lambda_{ht} I_M(t) + \lambda_{ht} I_T(t) - r_m I_MT(t) - e_m^h \lambda_{ah} I_MT(t) - r_t I_MT(t)
\]

\[
\frac{dI_MT(t)}{dt} = \lambda_{ht} I_M(t) - d_m I_MT(t) - d_d I_MT(t) - d_m I_MT(t)
\]
\[
\frac{dI_{HT}(t)}{dt} = e_t^a \lambda_{ah} I_T(t) + r_m I_{HMT}(t) + e_t^h \lambda_{th} I_H(t) - e_m^a \lambda_{mh} I_{HT}(t) - (1 - \alpha) \theta_l p I_{HT}(t) - d_n I_{HT}(t) - d_t I_{HT}(t) - r_t I_{HT}(t) + \alpha I_{AT}(t)
\]

\[
\frac{dI_A(t)}{dt} = e_t^a \lambda_A(t) + r_m I_{AMT}(t) + (1 - \alpha) \theta_l p I_{HT}(t) - \alpha I_{AT}(t)
\]

\[
\frac{dI_{HMT}(t)}{dt} = e_t^a \lambda_{mh} I_{HT}(t) + e_t^h \lambda_{th} I_{HM}(t) + e_m^a \lambda_{ah} I_{MT}(t) + \alpha I_{AMT}(t) - r_m I_{HMT}(t) - d_m I_{HMT}(t) - d_n I_{HMT}(t) - (1 - \alpha) \theta_l p I_{HMT}(t) - d_t I_{HMT}(t) - r_t I_{HMT}(t) - d_m I_{HMT}(t)
\]

\[
\frac{dI_{AMT}(t)}{dt} = e_t^a \lambda_{ah} I_{AT}(t) + e_t^h \lambda_{th} I_{AM}(t) + (1 - \alpha) \theta_l p I_{HMT}(t) - r_m I_{AMT}(t) - d_m I_{AMT}(t) - d_n I_{AMT}(t) - \alpha I_{AT}(t)
\]

\[
\frac{dS_V(t)}{dt} = \Lambda_V - \lambda_n S_V(t) - d_n S_V(t)
\]

\[
\frac{dI_V(t)}{dt} = \lambda_n S_V(t) - d_n I_V(t).
\]

2.3 POSITIVITY AND BOUNDEDNESS OF SOLUTIONS

The model system 2.2.1 describes living populations therefore the associated state variables are non-negative for all time $t > 0$. The solutions of this model with positive initial data therefore remain positive for all time $t > 0$.

Lemma 2.1. Let the initial data set be $\{(S_H(0), S_V(0) > 0), \{I_M(0), I_H(0), I_A(0), I_T(0), I_{HMT}(0), I_{AMT}(0), I_{HT}(0), I_{AT}(0), I_{HMT}(0), I_{AMT}(0), I_V(0)\}\} \equiv \Psi$. Then the solution set $\{(S_H, S_V, I_M, I_H, I_A, I_T, I_{HMT}, I_{AMT}, I_{HT}, I_{AT}, I_{HMT}, I_{AMT}, I_V)\}(t)$ is positive for all time $t > 0$.

Proof. Consider the first equation of 2.2.1 at time t

\[
\frac{dS_H}{dt} = \Lambda_H + r_m I_M + r_t I_T - \lambda_{ah} S_H - \lambda_{mh} S_H - \lambda_{th} S_H - d_n S_H
\]

then

\[
\frac{dS_H}{dt} \leq - (\lambda_{ah} + \lambda_{mh} + \lambda_{th} + d_n) S_H
\]

\[
\int \frac{dS_H}{S_H} \geq -\int (\lambda_{ah} + \lambda_{mh} + \lambda_{th} + d_n) d(t)
\]

\[
S_H(t) \geq S_H(0) e^{-\int (\lambda_{ah} + \lambda_{mh} + \lambda_{th} + d_n) d(t)} \geq 0
\]

From the second equation of 2.2.1 at time t

\[
\frac{dI_M}{dt} = \lambda_{mh} S_H + r_l I_{TM} - r_m I_M - e_m^a \lambda_{ah} I_M - \lambda_{th} I_M - d_n I_M - d_m I_M.
\]

then
We can proceed in a similar manner and show that all the state variables are positive for all time t.

Lemma 2.2. The solutions of the model 2.2.1 are uniformly bounded in a proper subset $\Psi = \Psi_H \times \Psi_V$

Proof. Let \(\{(S_H, I_M, I_H, I_A, I_T, I_{HM}, I_{AM}, I_{MT}, I_{HT}, I_{AT}, I_{HMT}, I_{AMT}) \} (t) \in \mathbb{R}^1, \)
be any solution with non-negative initial conditions. The rate of change of the total human population with time is given by:

\[
\frac{dN_H}{dt} = \Lambda_H - d_n N_H - (I_M + I_{HM}(t) + I_{AM}+ I_{MT} + I_{HMT} + I_{AMT})d_m - (I_T + I_{MT} + I_{HT} + I_{AT} + I_{HMT} + I_{AMT})d_I - (I_A + I_{AM} + I_{AT} + I_{AMT})d_a - d_{am} I_{AM} - d_{mt} (I_{MT} + I_{HMT}) - d_{at} I_{AT} - d_{amt} I_{AMT}.
\]

The model system 2.2.1 has a varying human population size $\frac{dN_H}{dt} \neq 0$ and therefore a trivial equilibrium is not feasible. Whenever $N_H > \frac{\Lambda_H}{d_n}$, then $\frac{dN_H}{dt} < 0$. Since $\frac{dN_H}{dt}$ is bounded by $\Lambda_H - d_n N_H$, a standard comparison theorem by (Birkoff and Rota, 1989) shows that $0 \leq N_H(t) \leq N_H(0)e^{-d_n t} + \frac{\Lambda_H}{d_n}(1-e^{-d_n t})$, where $N_H(0)$ represents the value of $N_H(t)$ evaluated at the initial values of the respective variables. Thus as $t \to \infty$, we have, $0 \leq N_H(t) \leq \frac{\Lambda_H}{d_n}$. In particular, $N_V(t) \leq \frac{\Lambda_H}{d_n}$, if $N_0 \leq \frac{\Lambda_H}{d_n}$. This shows that N_H is bounded and all the feasible solutions of the human only component of model 2.2.1 starting in the region Ψ_H approach, enter or stay in the region, where:

\[
\Psi_H = \{(S_H, I_M, I_H, I_A, I_T, I_{HM}, I_{MA}, I_{MT}, I_{HT}, I_{TA}, I_{HMT}, I_{MAT}) : N(i) \leq \frac{\Lambda_H}{d_n} \}.
\]

Similarly let \(\{(S_V, I_V) (t) \in \mathbb{R}^2_+ \), be any solution with non-negative initial conditions. The rate of change of the total vector population with time is given by:

\[
\frac{dI_V}{dt} = \frac{dM}{dt} \geq -(r_m + e_m^a \lambda_{ah} + \lambda_{th} + d_n + d_m)I_M.
\]
\[\frac{dN_V}{dt} = \Lambda_V - (S_V(t) - I_V(t))d_v. \]

\[\frac{dN_V}{dt} \neq 0 \] and therefore a trivial equilibrium is not feasible. Whenever \(N_V > \frac{\Lambda_V}{d_v} \), then \(\frac{dN_V}{dt} < 0 \). Since \(\frac{dN_V}{dt} \) is bounded by \(\Lambda_V - d_vN_V \), a standard comparison theorem by Birkhoff and Rota (1989), shows that \(0 \leq N_V(t) \leq N_V(0)e^{-d_v} + \frac{\Lambda_V}{d_v}(1 - e^{-d_v}) \), where \(N_V(0) \) represents the value of \(N_V(t) \) evaluated at the initial values of the respective variables. Thus as \(t \to \infty \), \(0 \leq N_V(t) \leq \frac{\Lambda_V}{d_v} \). In particular, \(N(t) \leq \frac{\Lambda_V}{d_v} \), if \(N_0 \leq \frac{\Lambda_V}{d_v} \). This shows that \(N_V \) is bounded and all the feasible solutions of the vector only component of model 2.2.1 starting in the region \(\Psi_V \) approach, enter or stay in the region, where: \(\Psi_V = \{(S_V, I_V) : N_V \leq \frac{\Lambda_V}{d_v}\} \). \(\square \).

2.4. LOCAL STABILITY OF THE DISEASE FREE EQUILIBRIUM

In the absence of infection by all the diseases, the model 2.2.1, has a steady-state solution called the disease-free equilibrium (DFE) given by

\[\xi_0^{df} = (S_H, I_M, I_H, I_A, I_T, I_MH, I_MA, I_MT, I_HT, I_TA, I_MHT, I_MAT, S_V, I_V) = (\frac{\Lambda_H}{d_a}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \frac{\Lambda_V}{d_v}, 0). \]

Define \(F_i \) as the rate of appearance of new infections in the class or compartment \(i \) and \(\psi_i = (\psi_i^+ - \psi_i^-) \), where \(\psi_i^- \) is the rate of transfer of individuals out of compartment \(i \), and \(\psi_i^+ \) is the rate of transfer of individuals into compartment \(i \) by all other means. Therefore; The Jacobian of \(F_i \) and \(\psi_i \) at the disease-free equilibrium denoted by \(F \) and \(\psi \) respectively is given by:

\[
F = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \alpha_1\beta_m \\
0 & a_1 & 0 & 0 & a_1 & 0 & 0 & a_1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \beta_1c_2 & 0 & 0 & \beta_1c_2 & \beta_1c_2 & \beta_1c_2 & \beta_1c_2 & \beta_1c_2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
(\alpha_1\beta_v) & 0 & 0 & 0 & \alpha_1\beta_v & \alpha_1\beta_v & \alpha_1\beta_v & 0 & 0 & \alpha_1\beta_v & \alpha_1\beta_v & 0 & 0 & 0 \\
\end{pmatrix}
\]

where: \(a_1 = \beta_a(1 - \delta)c_1 \)
\[V = \begin{pmatrix}
 u_1 & 0 & 0 & 0 & 0 & 0 & -r_t & 0 & 0 & 0 & 0 & 0 \\
 0 & u_2 & -\alpha & 0 & -r_m & 0 & 0 & -r_t & 0 & 0 & 0 & 0 \\
 0 & z_1 & u_3 & 0 & 0 & -r_m & 0 & 0 & -r_t & 0 & 0 & 0 \\
 0 & 0 & 0 & u_4 & 0 & 0 & -r_m & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & u_5 & -\alpha & 0 & 0 & 0 & -r_t & 0 & 0 \\
 0 & 0 & 0 & 0 & z_2 & u_6 & 0 & 0 & 0 & -r_t & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & u_7 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & u_8 & -\alpha & -r_m & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & z_3 & u_9 & 0 & -r_m & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & u_{10} & -\alpha & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & z_4 & u_{11} & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & d_v & 0
\end{pmatrix} \]

where \(z_1 = -(1 - \alpha)p, z_2 = -(1 - \alpha)\theta_2p, z_3 = -(1 - \alpha)\theta_1p, z_4 = -(1 - \alpha)\theta_3p, u_1 = r_m + d_n + d_m, u_2 = (1 - \alpha)p + d_n, u_3 = \alpha + d_a + d_n, u_4 = d_n + d_t + r_t, u_5 = r_m + d_n + d_m + d_n, u_6 = r_m + d_m + \alpha + d_n + d_a + d_{am}, u_7 = r_m + r_t + d_n + d_t + d_{mt}, u_8 = (1 - \alpha)\theta_1p + d_n + d_t + r_t, u_9 = \alpha + d_n + d_{at} + d_t + r_t, u_{10} = r_m + d_n + d_m + d_n + (1 - \alpha)\theta_3p + d_t + r_t + d_{am}, u_{11} = r_m + d_m + d_n + d_a + \alpha + d_n + d_t + r_t + d_{amt} \)

The basic reproduction number \(R_0 = R_{HMT} \) is the maximum value of the spectral radius of the matrix \(FV^{-1} \) and is given by \(R_{HMT} = \max\{R_M, R_H, R_T\} \). Where:

\[R_M = \frac{\alpha_1 \sqrt{\beta_{m2} v}}{\sqrt{d_n d_v + d_n d_v + d_v r_m}} \] \hspace{1cm} (2.4.1)

\[R_T = \frac{\beta_{1c_2}}{d_n + d_t + r_t} \] \hspace{1cm} (2.4.2)

\[R_H = \frac{\alpha_1 (1 - \delta)(\alpha + d_a + d_n) \beta_a}{(\alpha d_n + d_a d_n + d_n^2 + d_a p - \alpha d_a p + d_n p - \alpha d_n p)} \] \hspace{1cm} (2.4.3)
2.5. PARAMETER VALUES FOR THE HIV/AIDS, TB AND MALARIA MODEL

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value (day^{-1})</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ_H</td>
<td>Recruitment rate of humans</td>
<td>4.38356×10^4</td>
<td>Kenya demographics profile (2014)</td>
</tr>
<tr>
<td>d_n</td>
<td>Natural death rate of humans</td>
<td>4.56630×10^{-3}</td>
<td>Kenya demographics profile (2014)</td>
</tr>
<tr>
<td>d_a</td>
<td>HIV/AIDS-induced death rate</td>
<td>1.09589×10^{-3}</td>
<td>WHO report (2014)</td>
</tr>
<tr>
<td>p</td>
<td>Progression rate from HIV to AIDS (untreated)</td>
<td>2.73972×10^{-3}</td>
<td>Baryama, F. and Mugisha, T. (2007)</td>
</tr>
<tr>
<td>α</td>
<td>Proportion of the HIV/AIDS victims treated</td>
<td>1.64384×10^{-3}</td>
<td>Kenya NACC report (2014)</td>
</tr>
<tr>
<td>β_a</td>
<td>Transmission probability of HIV/AIDS</td>
<td>0.019</td>
<td>Baryama, F. and Mugisha, T. (2007)</td>
</tr>
<tr>
<td>c_1</td>
<td>Per capita number of sexual contacts</td>
<td>2.46575×10^{-2}</td>
<td>Kenya NACC report (2014)</td>
</tr>
<tr>
<td>δ</td>
<td>Effectiveness of counseling</td>
<td>Variable</td>
<td></td>
</tr>
<tr>
<td>r_m</td>
<td>Proportion of malaria victims treated</td>
<td>1.86301×10^{-3}</td>
<td>WHO report (2013)</td>
</tr>
<tr>
<td>d_m</td>
<td>Death rate due to malaria</td>
<td>0.000345</td>
<td>Chitnis et al (2006)</td>
</tr>
<tr>
<td>α_1</td>
<td>Mosquito biting rate</td>
<td>0.125</td>
<td>Lawi et al (2011)</td>
</tr>
<tr>
<td>β_m</td>
<td>Transmission probability of malaria in humans</td>
<td>0.8333</td>
<td>Lawi et al (2011)</td>
</tr>
<tr>
<td>β_v</td>
<td>Transmission probability of malaria in vectors</td>
<td>(0 - 1)</td>
<td>Chiyaka and Dube (2007)</td>
</tr>
<tr>
<td>e_{al}^m</td>
<td>Increased susceptibility to malaria due to AIDS and TB co infections</td>
<td>10</td>
<td>Estimated</td>
</tr>
<tr>
<td>e_{m}^H</td>
<td>Reduced susceptibility to malaria due to reduced sexual activity</td>
<td>0.005</td>
<td>Estimated</td>
</tr>
<tr>
<td>Λ_V</td>
<td>Recruitment rate of vectors</td>
<td>6</td>
<td>Chiyaka and Dube (2007)</td>
</tr>
<tr>
<td>d_v</td>
<td>Death rate of mosquitoes</td>
<td>0.1429</td>
<td>Lawi et al (2011)</td>
</tr>
<tr>
<td>θ_1</td>
<td>Increased progression rate from HIV to AIDS due to TB</td>
<td>1.5</td>
<td>Estimated</td>
</tr>
<tr>
<td>θ_2</td>
<td>Increased progression rate from HIV to AIDS due to malaria</td>
<td>2</td>
<td>Estimated</td>
</tr>
<tr>
<td>θ_3</td>
<td>Progression rate from HIV to AIDS due to TB and malaria</td>
<td>3</td>
<td>Estimated</td>
</tr>
<tr>
<td>Symbol</td>
<td>Parameter</td>
<td>Value (day^{-1})</td>
<td>Source</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>d_{am}</td>
<td>Death rate due to AIDS and malaria</td>
<td>0.0005175</td>
<td>Baryama, F. and Mugisha, T. (2007)</td>
</tr>
<tr>
<td>d_{at}</td>
<td>Death rate due to AIDS and tuberculosis</td>
<td>0.0016438356</td>
<td>WHO report (2013)</td>
</tr>
<tr>
<td>β_t</td>
<td>Transmission probability HIV of TB in humans</td>
<td>0.027</td>
<td>Juan and Castillo (2009)</td>
</tr>
<tr>
<td>ψ_2</td>
<td>contact rate of susceptible humans with TB infectives</td>
<td>15</td>
<td>Juan and Castillo (2009)</td>
</tr>
<tr>
<td>r_t</td>
<td>Proportion of TB victims treated</td>
<td>0.6</td>
<td>WHO report (2013)</td>
</tr>
<tr>
<td>d_{amt}</td>
<td>Death rate due to AIDS, malaria and TB</td>
<td>0.00069</td>
<td>Estimated</td>
</tr>
<tr>
<td>c^t_{ih}</td>
<td>Increased susceptibility to TB due to AIDS infection</td>
<td>2.0</td>
<td>Estimated</td>
</tr>
<tr>
<td>e^t_{ia}</td>
<td>Increased susceptibility to malaria due to HIV</td>
<td>6</td>
<td>Oluwaseun et al (2008)</td>
</tr>
</tbody>
</table>

Lemma 2.3. The DFE of the HIV/AIDS, TB and malaria model is locally asymptotically stable (LAS) if $R_{HMT} < 1$, and unstable otherwise.

Lemma 2.3 is illustrated numerically in figure 1 using $R_H = 0.51$, $R_T = 0.69$ and $R_M = 0.50$.
2.6 SENSITIVITY ANALYSIS OF TREATMENT AND COUNSELING

To investigate the potential impact of counseling and treatment on disease progression, sensitivity analysis of the reproduction numbers with respect to counseling and treatment is carried out. The sensitivity index of R_H with respect to δ is given by:

$$R_H^{\delta} = -\frac{\delta}{1 - \delta} \quad (2.5.1)$$

The negative sign in equation 2.5.1 indicates that there is an expected decline in the rate of new HIV/AIDS infections when counseling is scaled up. Similarly, the sensitivity index of R_H with respect to α is given by:

$$R_H^{\alpha} = \frac{\alpha A_1\{-\beta_n c_1 A_2 A_3 (1 - \delta)\}}{\beta_n c_1 A_2 (1 - \delta)} \quad (2.5.2)$$

$$A_1 = \alpha d_n + d_a d_n + d_n^2 + d_a p - \alpha d_a p + d_n p - \alpha d_n p$$
$$A_2 = \alpha + d_a + d_n$$
$$A_3 = d_n - d_a p - d_n p$$

Numerical simulations show that the sensitivity index of R_H with respect to treatment is positive indicating that an increase in the proportions of those treated leads to an increase in new HIV cases as shown in figure 2.

![Figure 2](image)

The sensitivity index of R_M with respect to r_m is given by

$$R_M^{r_m} = -\frac{d_m r_m}{2(d_m d_v + d_n d_v + d_v m)} \quad (2.5.3)$$

Similarly, the sensitivity index of R_T with respect to r_t is given by

$$R_T^{r_t} = -\frac{r_t}{d_n + d_t + r_t} \quad (2.5.4)$$

The negative sign in equations 2.5.3 and 2.5.4 indicates that there is an expected decline in the rate of new malaria and TB cases when treatment is scaled up. Numerical simulations using the parameter values in table 2.4.1 shows that the sensitivity index of R_H, R_M and R_T with respect to treatment and counseling yields $R_H^{r_t} = -0.950226$, $R_M^{r_m} = 0.420516$, $R_H^{\delta} = -0.413328$ and $R_H^{\alpha} = -2.3333$ respectively. Assuming that $R_{HMT} = \max \{R_M, R_T, R_H\} = R_H$.

87
then counseling for the HIV/AIDS individuals is the most sensitive parameter for the control of HIV/AIDS, TB and malaria co infections.

3. CONCLUSION
In summary The local stability of the disease free equilibrium was investigated by Theorem 2 by Van, P. and Watmough, J. (2002). The theorem showed that the HIV/AIDS, TB and malaria co infection model have a disease free equilibrium point which is locally asymptotically stable whenever the reproduction number is less than unity. The sensitivity indices of the reproduction numbers \(R_H, R_{H/I}, R_{H/T} \) and \(R_{HMT} \) with respect to counseling for the HIV/AIDS individuals yields a negative sign indicating that there is an expected decline in the rate of new infections and co infections when counseling is scaled up. Similarly, the sensitivity indices of the malaria reproduction number \(R_M \) and the TB reproduction number \(R_T \) with respect to malaria and TB treatment yields a negative sign also indicating that there is an expected decline in the rate of new malaria and TB infections when treatment is scaled up. Numerical simulations of the sensitivity index of \(R_M \) with respect to ARV treatment yielded a positive gradient indicating that an increase in the proportions of those treated leads to an increase in new HIV cases

3.1. ACKNOWLEDGEMENTS
The author is very grateful to Mark Okongo (Department of Physical Sciences) Chuka University - Kenya, for many excellent comments that have enhanced the model as well as the clarity of the paper.

4. REFERENCES