FIXED POINT THEOREM IN MENGER SPACE FOR SEMI-COMPATIBLE MAPPINGS

Arihant Jain¹, Nirmala Gupta² & V. K. Gupta²
¹Department of Applied Mathematics, Shri Guru Sandipani Institute of Technology and Science, Ujjain (M.P.) 456 550 India
²Department of Mathematics, Madhav Science P.G. College, Ujjain (M.P.) 456 010 India

ABSTRACT
In this paper, the concept of semi-compatibility and weak compatibility in Menger space has been applied to prove a common fixed point theorem for six self maps.

Keywords: Probabilistic metric space, Menger space, common fixed point, compatible maps, semi-compatible maps, weak compatibility.

AMS Subject Classification: Primary 47H10, Secondary 54H25.

1. INTRODUCTION
There have been a number of generalizations of metric space. One such generalization is Menger space initiated by Menger [4]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution function $F_{x,y}$. Schweizer and Sklar [8] studied this concept and gave some fundamental results on this space. Sehgal and Bharucha-Reid [9] obtained a generalization of Banach Contraction Principle on a complete Menger space which is a milestone in developing fixed-point theory in Menger space.

Recently, Jungck and Rhoades [3] termed a pair of self maps to be coincidentally commuting or equivalently weakly compatible if they commute at their coincidence points. Sessa [10] initiated the tradition of improving commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces. Jungck [2] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger space has been introduced by Mishra [5].

In this paper a fixed point theorem for six self maps has been proved using the concept of semi-compatible maps and weak compatible maps.

2. PRELIMINARIES
Definition 2.1. A mapping $f : R \rightarrow R^+$ is called a distribution if it is non-decreasing left continuous with
$$\inf \{ f(t) \mid t \in R \} = 0 \quad \text{and} \quad \sup \{ f(t) \mid t \in R \} = 1.$$ We shall denote by L the set of all distribution functions while H will always denote the specific distribution function defined by
$$H(t) = \begin{cases} 0, & t \leq 0 \\ 1, & t > 0 \end{cases}.$$

Definition 2.2. A triangular norm * (shortly t-norm) is a binary operation on the unit interval $[0, 1]$ such that for all $a, b, c, d \in [0, 1]$ the following conditions are satisfied:
(a) $a * 1 = a$;
(b) $a * b = b * a$;
(c) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$;
(d) $a * (b * c) = (a * b) * c$.

Examples of t-norms are $a * b = \max \{a + b - 1, 0\}$ and $a * b = \min \{a, b\}$.

Definition 2.3. [8] A probabilistic metric space (PM-space) is an ordered pair (X, f) consisting of a non-empty set X and a function $f : X \times X \rightarrow L$, where L is the collection of all distribution functions and the value of f at $(u, v) \in X \times X$ is represented by $F_{u,v}$. The function $F_{u,v}$ assumed to satisfy the following conditions:
(PM-1) $F_{u,v}(x) = 1$, for all $x > 0$, if and only if $u = v$;
(PM-2) \(F_{x,x}(0) = 0; \)
(PM-3) \(F_{x,y} = F_{y,x}; \)
(PM-4) If \(F_{x,y}(x) = 1 \) and \(F_{v,w}(y) = 1 \) then \(F_{u,w}(x + y) = 1, \)
\(\text{for all } u,v,w \in X \text{ and } x, y > 0. \)

Definition 2.4. [8] A Menger space is a triplet \((X, \mathcal{F}, *)\) where \((X, \mathcal{F})\) is a PM-space and \(* \) is a t-norm such that the inequality

\((PM-5) \quad F_{u,w}(x + y) \geq F_{u,v}(x) * F_{v,w}(y), \quad \text{for all } u, v, w \in X, x, y \geq 0. \)

Proposition 2.1. [9] Let \((X, d)\) be a metric space. Then the metric \(d\) induces a distribution function \(F \) defined by \(F_{x,y}(\varepsilon) = H(\varepsilon - d(x,y)) \) for all \(x, y \in X \) and \(\varepsilon > 0. \) If \(t \)-norm \(* \) is a \(* b = \min\{a, b\} \) for all \(a, b \in [0, 1] \) then \((X, F, *)\) is a Menger space. Further, \((X, F, *)\) is a complete Menger space if \((X, d)\) is complete.

Definition 2.5. [5] Let \((X, F, *)\) be a Menger space and \(* \) be a continuous t-norm.
(a) A sequence \(\{x_n\} \) in \(X \) is said to be converge to a point \(x \) in \(S \) (written \(x_n \to x \)) iff for every \(\varepsilon > 0 \) and \(\lambda \in (0,1) \), there exists an integer \(n_0 = n_0(\varepsilon, \lambda) \) such that \(F_{x,x}(\varepsilon) > 1 - \lambda \) for all \(n \geq n_0. \)
(b) A sequence \(\{x_n\} \) in \(X \) is said to be Cauchy if for every \(\varepsilon > 0 \) and \(\lambda \in (0,1) \), there exists an integer \(n_0 = n_0(\varepsilon, \lambda) \) such that \(F_{x,x}(\varepsilon) > 1 - \lambda \) for all \(n \geq n_0 \) and \(p > 0. \)
(c) A Menger space in which every Cauchy sequence is convergent is said to be complete.

Remark 2.1. If \(* \) is a continuous t-norm, it follows from \((PM-4)\) that the limit of sequence in Menger space is uniquely determined.

Definition 2.6. [11] Self mappings \(A \) and \(S \) of a Menger space \((X, F, t)\) are said to be weak compatible if they commute at their coincidence points i.e. \(Ax = Sx \) for \(x \in X \) implies \(ASx = SAx. \)

Definition 2.7. [5] Self mappings \(A \) and \(S \) of a Menger space \((X, F, t)\) are said to be compatible if \(F_{ASx_n} \to 1 \) for all \(x > 0, \) whenever \(\{x_n\} \) is a sequence in \(X \) such that \(Ax_n, Sx_n \to u \) for some \(u \) in \(X, \) as \(n \to \infty. \)

Definition 2.8. Self mappings \(A \) and \(S \) of a Menger space \((X, F, t)\) are said to be semi-compatible if \(F_{ASx_n} \to 1 \) for all \(x > 0, \) whenever \(\{x_n\} \) is a sequence in \(X \) such that \(Ax_n, Sx_n \to u, \) for some \(u \) in \(X, \) as \(n \to \infty. \)

Now, we give an example of pair of self maps \((S, T)\) which is semi-compatible but not compatible. Further we observe here that the pair \((T, S)\) is not semi-compatible though \((S, T)\) is semi-compatible.

Example 2.1. Let \((X, d)\) be a metric space where \(X = [0, 1] \) and \((X, F, t)\) be the induced Menger space with \(F_{p,q}(\varepsilon) = H(\varepsilon - d(p, q)), \forall p, q \in X \) and \(\forall \varepsilon > 0. \) Define self maps \(S \) and \(T \) as follows:

\[
Sx = \begin{cases}
x & \text{if } 0 \leq x < \frac{1}{2} \\
1 & \text{if } \frac{1}{2} \leq x \leq 1
\end{cases}
\]

\[
Tx = \begin{cases}
1 & \text{if } 0 \leq x < \frac{1}{2} \\
\frac{1}{2} & \text{if } \frac{1}{2} \leq x \leq 1
\end{cases}
\]

Take \(x_n = \frac{1}{2} - \frac{1}{n}. \) Now,

\[
F_{Sx_n,1/2}(\varepsilon) = H(\varepsilon - (1/n)).
\]

Therefore, \(\lim_{n \to \infty} F_{Sx_n,1/2}(\varepsilon) = H(\varepsilon) = 1. \)

Hence, \(Sx_n \to 1/2 \) as \(n \to \infty. \)

Similarly, \(Tx_n \to 1/2 \) as \(n \to \infty. \)

Also
\[F_{STx_nT^n}(\epsilon) = H\left(\epsilon - \frac{1}{2} \right) \neq 1, \quad \forall \epsilon > 0. \]

Hence, the pair \((S, T)\) is not compatible.

Again, \(\lim_{n \to \infty} F_{STx_nT^n}(\epsilon) = \lim_{n \to \infty} F_{STx_n}(\epsilon) = H(\epsilon - 1) = 1 \forall \epsilon > 0. \)

Thus, \((S, T)\) is semi-compatible.

Now, \(\lim_{n \to \infty} F_{STx_nS^n}(\epsilon) \neq 1, \quad \forall \epsilon > 0. \)

Thus, \((T, S)\) is not semi-compatible.

Remark 2.2. In view of above example, it follows that the concept of semi-compatibility is more general than that of compatibility.

Lemma 2.1. [11] Let \(\{x_n\}\) be a sequence in a Menger space \((X, F, \ast)\) with continuous \(t\)-norm \(\ast\) and \(t \ast t \geq t\). If there exists a constant \(k \in (0, 1)\) such that

\[F_{x_n x_{n+1}}(kt) \geq F_{x_{n+1} x_n}(t) \]

for all \(t > 0\) and \(n = 1, 2, 3, \ldots\), then \(\{x_n\}\) is a Cauchy sequence in \(X\).

3. **MAIN RESULT**

Theorem 3.1. Let \(A, B, S, T, L, M\) be self maps of a complete Menger space \((X, F, \ast)\) with \(t \ast t \geq t\) satisfying:

(3.1.1) \(L(X) \subseteq ST(X), M(X) \subseteq AB(X)\);

(3.1.2) \(AB = BA, ST = TS, LB = BL, MT = TM\);

(3.1.3) \(\text{either } L \text{ or } AB \text{ is continuous}\);

(3.1.4) \((L, AB) \text{ is semi-compatible and } (M, ST) \text{ weak compatible}\);

(3.1.5) \(\text{there exists a constant } k \in (0, 1) \text{ such that}\)

\[F^2_{x_n x_{n+1}}(kt) \ast [F_{ABx_n x_{n+1}}(kt) \ast F_{STx_n x_{n+1}}(kt)] \geq [pF_{ABx_n x_{n+1}}(t) + qF_{ABx_n x_{n+1}}(t)] \cdot F_{ABx_n x_{n+1}}(2kt) \]

for all \(x, y \in X\) and \(t > 0\) where \(0 < p, q < 1\) such that \(p + q = 1\).

Then \(A, B, S, T, L, M\) have a unique common fixed point in \(X\).

Proof. Suppose \(x_0 \in X\). From condition (3.1.1) \(\exists\) \(x_1, x_2 \in X\) such that

\[Lx_0 = STx_1 \quad \text{and} \quad Mx_1 = ABx_2. \]

Inductively, we can construct sequences \(\{x_n\}\) and \(\{y_n\}\) in \(X\) such that

\[y_{2n} = Lx_{2n} = STx_{2n+1} \quad \text{and} \quad y_{2n+1} = Mx_{2n+1} = ABx_{2n+2} \text{ for } n = 0, 1, 2, \ldots. \]

Step 1. Taking \(x = x_{2n}\) and \(y = x_{2n+1}\) in (3.1.5), we have

\[F^2_{2n+2n}(kt) \ast [F_{ABx_{2n} x_{2n+1}}(kt) \ast F_{STx_{2n+1} x_{2n+1}}(kt)] \geq [pF_{ABx_{2n} x_{2n+1}}(t) + qF_{ABx_{2n} x_{2n+1}}(t)] \cdot F_{ABx_{2n} x_{2n+1}}(2kt) \]

\[F^2_{2n+2n} \ast [F_{2n+2n} \ast F_{2n+2n}] \geq [pF_{2n+2n} + qF_{2n+2n}] \cdot F_{2n+2n}(2kt) \]

\[F_{2n+2n} \ast [F_{2n+2n} \ast F_{2n+2n}] \geq [pF_{2n+2n} + qF_{2n+2n}] \cdot F_{2n+2n}(2kt) \]

\[F_{2n+2n} \ast [F_{2n+2n} \ast F_{2n+2n}] \geq [pF_{2n+2n} + qF_{2n+2n}] \cdot F_{2n+2n}(2kt) \]

Hence, we have

\[F_{2n+2n}(kt) \geq F_{2n+2n}(t). \]

Similarly, we also have

\[F_{2n+2n}(kt) \geq F_{2n+2n}(t). \]

In general, for all \(n\) even or odd, we have

\[F_{n+2n}(kt) \geq F_{n+2n}(t) \]

for \(k \in (0, 1)\) and all \(t > 0\). Thus, by lemma 2.1, \(\{y_n\}\) is a Cauchy sequence in \(X\). Since \((X, F, \ast)\) is complete, it converges to a point \(z\) in \(X\). Also its subsequences converge as follows:

\[\{Lx_{2n}\} \to z, \quad \{ABx_{2n}\} \to z, \quad \{Mx_{2n+1}\} \to z \text{ and } \{STx_{2n+1}\} \to z. \]
Case 1. Suppose AB is continuous.
As AB is continuous and \((L, AB)\) is semi-compatible, we get
\[LABx_{2n+2} \rightarrow Lz \quad \text{and} \quad LABx_{2n+2} \rightarrow ABz. \] (3.1.7)
Since the limit in Menger space is unique, we get
\[Lz = ABz. \] (3.1.8)

Step 2. By taking \(x = ABx_{2n} \) and \(y = x_{2n+1} \) in (3.1.5), we have
\[
F^2_{LABx_{2n}, Mx_{2n+1}}(kt) \ast [F_{ABx_{2n}, LABx_{2n}}(kt), F_{STx_{2n+1}, Mx_{2n+1}}(kt)] \\
\geq [pF_{ABx_{2n}, LABx_{2n}}(t) + qF_{STx_{2n+1}, Mx_{2n+1}}(2kt)].
\]
Taking limit \(n \rightarrow \infty \),
\[
F^2_{z, ABz}(kt) \ast [F_{ABz, ABz}(kt), F_{z, z}(kt)] \\
\geq [pF_{ABz, ABz}(t) + qF_{z, z}(2kt)].
\]
for \(k \in (0, 1) \) and all \(t > 0 \). Thus, we have
\[z = ABz. \]

Step 3. By taking \(x = z \) and \(y = x_{2n+1} \) in (3.1.5), we have
\[
F^2_{z, Lz}(kt) \ast [F_{z, Lz}(kt), F_{z, z}(kt)] \\
\geq [pF_{z, Lz}(t) + qF_{z, z}(2kt)].
\]
Taking limit \(n \rightarrow \infty \),
\[
F^2_{z, Lz}(kt) \ast [F_{z, Lz}(kt), F_{z, z}(kt)] \\
\geq [p + qF_{z, Lz}(t)].
\]
for \(k \in (0, 1) \) and all \(t > 0 \). Thus, we have
\[z = ABz. \]

Step 4. By taking \(x = Bz \) and \(y = x_{2n+1} \) in (3.1.5), we have
\[
F^2_{LBz, Mx_{2n+1}}(kt) \ast [F_{ABz, LABz}(kt), F_{STx_{2n+1}, Mx_{2n+1}}(kt)] \\
\geq [pF_{ABz, LABz}(t) + qF_{STx_{2n+1}, Mx_{2n+1}}(2kt)].
\]
Since \(AB = BA \) and \(BL = LB \), we have
\[L(Bz) = B(Lz) = Bz \quad \text{and} \quad AB(Bz) = B(ABz) = Bz. \]
Taking limit \(n \rightarrow \infty \), we have
\[
F^2_{z, Bz}(kt) \ast [F_{z, Bz}(kt), F_{z, z}(kt)] \\
\geq [p + qF_{z, Bz}(2kt)].
\]
for \(k \in (0, 1) \) and all \(t > 0 \). Thus, we have
\[z = ABz. \]
\[F_{z,Bz}(kt) \geq \frac{p}{1 - q} = 1 \]
for \(k \in (0, 1) \) and all \(t > 0 \).
Thus, we have \(z = Bz \).
Since \(z = ABz \), we also have \(z = Az \).
Therefore, \(z = Az = Bz = Lz \).

Step 5. Since \(L(X) \subseteq ST(X) \) there exists \(v \in X \) such that \(z = Lz = STv \).
By taking \(x = x_{2n} \) and \(y = v \) in (3.1.5), we get
\[
F^2_{Lx_{2n}^{2n}z,Mz}(kt)[F_{ABx_{2n}^{2n}Lx_{2n}^{2n}(kt)}F_{STv,Mv}(kt)]
\geq [pF_{ABx_{2n}^{2n}Lx_{2n}^{2n}(kt)} + qF_{ABx_{2n}^{2n}STv(t)}]F_{ABx_{2n}^{2n}Mv}(2kt).
\]
Taking limit as \(n \to \infty \), we have
\[
F^2_{z,Mv}(kt)[F_{z,Mv}(kt)] \geq [pF_{z,Mv}(t) + qF_{z,Mv}(t)]F_{z,Mv}(2kt)
\geq F_{z,Mv}(t).
\]
Thus, we have \(z = Mv \) and so \(z = Mv = STv \).
Since \((M, ST)\) is weakly compatible, we have \(STMv = MSTv \).
Thus, \(STz = Mz \).

Step 6. By taking \(x = x_{2n}, y = z \) in (3.1.5) and using Step 5, we have
\[
F^2_{Lx_{2n}^{2n}z,Mz}(kt)[F_{ABx_{2n}^{2n}Lx_{2n}^{2n}(kt)}F_{STz,Mz}(kt)]
\geq [pF_{ABx_{2n}^{2n}Lx_{2n}^{2n}(kt)} + qF_{ABx_{2n}^{2n}STz(t)}]F_{ABx_{2n}^{2n}Mz}(2kt)
\]which implies that, as \(n \to \infty \)
\[
F^2_{z,Mz}(kt)[F_{z,Mz}(kt)] \geq [pF_{z,Mz}(t) + qF_{z,Mz}(t)]F_{z,Mz}(2kt)
\geq [p + qF_{z,Mz}(t)]F_{z,Mz}(kt)
\geq p + qF_{z,Mz}(kt)
\geq F_{z,Mz}(kt) \geq \frac{p}{1 - q} = 1.
\]
Thus, we have \(z = Mz \) and therefore \(z = Az = Bz = Lz = Mz = STz \).

Step 7. By taking \(x = x_{2n}, y = Tz \) in (3.1.5), we have
\[
F^2_{Lx_{2n}^{2n}Tz,Mz}(kt)[F_{ABx_{2n}^{2n}Lx_{2n}^{2n}(kt)}F_{STz,Mz}(kt)]
\geq [pF_{ABx_{2n}^{2n}Lx_{2n}^{2n}(kt)} + qF_{ABx_{2n}^{2n}STz(t)}]F_{ABx_{2n}^{2n}Mz}(2kt).
\]
Since \(MT = TM \) and \(ST = TS \), we have \(MTz = TMz = Tz \) and \(ST(Tz) = T(STz) = Tz \).
Letting \(n \to \infty \), we have
\[
F^2_{z,Tz}(kt)[F_{z,Tz}(kt)] \geq [pF_{z,Tz}(t) + qF_{z,Tz}(t)]F_{z,Tz}(2kt)
\geq p + qF_{z,Tz}(kt)
\geq F_{z,Tz}(kt) \geq \frac{p}{1 - q} = 1.
\]
Thus, we have \(z = Tz \). Since \(Tz = STz \), we also have \(z = Sz \)
Therefore, \(z = Az = Bz = Lz = Mz = Sz = Tz \), that is, \(z \) is the common fixed point of the six maps.

Case II. L is continuous.

Since \(L \) is continuous, \(LLx_{2n} \to Lz \) and \(L(AB)x_{2n} \to Lz \).

Step 8. By taking \(x = Lx_{2n}, y = x_{2n+1} \) in (3.1.5), we have

\[
F_{Lx_{2n},My_{2n+1}}(kt) \geq [pF_{Ax_{2n},Lx_{2n}}(t) + qF_{Sx_{2n+1},My_{2n+1}}(t)]F_{Ax_{2n},My_{2n+1}}(2kt)
\]

Letting \(n \to \infty \), we have

\[
F_{z,Lz}(kt) \geq [pF_{z,Lz}(t) + qF_{z,Lz}(t)]F_{z,Lz}(2kt)
\]

which implies that

\[
F_{z,Lz}(kt) = 1.
\]

Thus, we have \(z = Lz \) and using Steps 5-7, we have \(z = Lz = Mz = Sz = Tz \).

Step 9. Since \(L \) is continuous, \(LLx_{2n} \to Lz \) and \(LABx_{2n} \to ABz \).

Since \((L, AB) \) is semi-compatible, \(L(AB)x_{2n} \to ABz \).

Since limit in Menger space is unique, so \(Lz = ABz \) and using Step 4, we also have \(z = Bz \).

Therefore, \(z = Az = Bz = Sz = Tz = Lz = Mz \), that is, \(z \) is the common fixed point of the six maps in this case also.

Step 10. For uniqueness, let \(w (w \neq z) \) be another common fixed point of \(A, B, S, T, L \) and \(M \).

Taking \(x = z, y = w \) in (3.1.5), we have

\[
F_{z,w}(kt) \geq [pF_{Ax,Lz}(t) + qF_{Sx,My}(t)]F_{Ax,My}(2kt)
\]

which implies that

\[
F_{z,w}(kt) \geq 1.
\]

Thus, we have \(z = w \).

This completes the proof of the theorem.

If we take \(B = T = I_X \) (the identity map on \(X \)) in theorem 3.1, we have the following:

Corollary 3.2. Let \(A, S, L \) and \(M \) be self maps of a complete Menger space \((X, f, \ast) \) with \(t \ast t \geq t \) satisfying:

(a) \(L(X) \subseteq S(X), \ M(X) \subseteq A(X) \);
(b) \(L \) or \(A \) is continuous;
(c) \((L, A) \) is semi-compatible and \((M, S) \) is weak compatible;
(d) \(\exists k \in (0, 1) \) such that

\[
F_{Lx,Mx}(kt) \geq [pF_{Ax,Lx}(t) + qF_{Ax,Sy}(t)]F_{Ax,My}(2kt)
\]

for all \(x, y \in X \) and \(t > 0 \) where \(0 < p, q < 1 \) such that \(p + q = 1 \).

Then \(A, S, L \) and \(M \) have a unique common fixed point in \(X \).
REFERENCES