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ABSTRACT 

It’s known that in nonlinear analysis of a 3D beam with the corotational method, we obtain a non-symmetric 

tangent stiffness matrix, even in the case of a conservative loading, this is due to the fact that the rotation in any 

point can no longer be described by a vector, as in the linear case, but by an orthogonal rotation matrix, that is 

an element of the special orthogonal group SO(3), which makes the configuration space of the beam to be non-

Euclidean. We will try to prove that by replacing the directional derivative in the derivation of the tangent 

stiffness, by the covariant derivative, we will always obtain a symmetric matrix, even away from a non-

equilibrium configuration. 
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1.     INTRODUCTION 

The main idea of the corotational method in the study of nonlinear element, is to separate the purely 

deformational motion from the rigid body motion, thus we can separate the computation of the local stiffness of 

the beam, from the corotational procedure, where we introduce all the geometric non linearity’s, the procedure 

can be then applied to any two node element with twelve degree of freedom. It’s one of the advantages of the 

method, it allow us to use linear higher order beam elements that we already have in our finite element library. 

The local behaviorwill bedescribed by local displacements and rotations, expressed in a local moving frame 

attached to the beam, in function of the global displacements and rotations that are expressed in the global 

frame. The choice of the moving frame attached to the beam, can have some incident on the convergence rate of 

the solution, different choice exist in the literature, for simplicity we will use in this paper the frame attached 

and centered at one of the beam’s node as the element frame. 

In the finite element formulation of a non-linear beam element, we will need to perform a linearization of the 

virtual work, this is done with the aim of a directional derivative, leading to the derivation of a non-symmetric 

tangent stiffness matrix, even for conservative loading.This is due to the non-linear structure of the 

configuration space, which represents the rotation at a beam’s node with an orthogonal matrix. In structural 

analysis, we need to hold the symmetry of the problem for conservative loading, this has motivated the 

development of alternative formulations that use additive rotation vector to derive a symmetric stiffness matrix. 

J.C. Simo [1] has shown for a geometrically exact beam model, that by replacing the directional derivative by a 

covariant derivative in the linearization process of the virtual work , we will always obtain a symmetric tangent 

stiffness matrix, even away from an equilibrium state, and this symmetric matrix correspond to the symmetric 

part of the non-symmetric stiffness matrix obtained with a directional derivative. This gives a strong 

justification for the symmetrizing process used to derive a symmetric tangent stiffness matrix.In general way, 

we can prove, as it’s shown in Zefran& Kumar [4], that by using a symmetric connection in a Riemannian 

manifold, we will always obtain a symmetric tangent stiffness matrix. 

In the corotational method we also use a symmetrizing process to derive a symmetric matrix. Crisfield propose 

to check the numerical results to verify that the quadratic convergence in a Newton-Raphson method is not 

impaired. In this paper we will follow the work of J.C. Simo [1], byreplacing the directional derivative by a 

covariant derivative in the corotational formulation, the matrix obtained will be then symmetric but unlike the 

geometrically exact method, this matrix do not exactly correspond to the symmetric part of the non-symmetric 

matrix obtained by the classical formulation, some terms will be missing. 

 

2.     CONFIGURATION SPACE AND RIEMANNIAN METRIC: 

In the corotational method, we work in the discretized form of the beam into two nodes.The configuration space 

will be described by the position vector and the rotation matrix at each end nodes of the beam: 

 

 𝑄 =  Φ =  𝜑𝐴 , 𝑅𝐴 , 𝜑𝐵 , 𝑅𝐵  /  𝜑𝐴 , 𝜑𝐵 ∈ ℝ3 × ℝ3 ,  𝑅𝐴 , 𝑅𝐵 ∈  𝑆𝑂(3) × 𝑆𝑂(3)  1.  

 

For what follows we will introduce somenotations. For𝑣𝑇 =  𝑣𝑥 𝑣𝑦 𝑣𝑧 ∈ ℝ3,𝑤 ∈ ℝ3and 𝑅 ∈ 𝑆𝑂(3) we will 

have: 
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𝑣 × 𝑤 = 𝑣 𝑤   ,    𝑣 𝑅 = 𝑣𝑅with𝑣 =  

0 −𝑣𝑧 𝑣𝑦

𝑣𝑧 0 −𝑣𝑥

−𝑣𝑦 𝑣𝑥 0
 ∈ 𝑠𝑜(3) 

 

Where so(3) is the space of skew symmetric matrices, and ×denote the vectorial product. 

The tangent space to Q at a given configuration Φ, is obtained by superposing infinitesimal displacement and 

rotation at each node: 

 

 𝑇Φ𝑄 =  𝑉Φ =  𝑣1 , 𝑣2 𝑅𝐴 , 𝑣3 , 𝑣4 𝑅𝐵  /  𝑣1 , 𝑣3 ∈ ℝ3 × ℝ3 ,  𝑣2 , 𝑣4  ∈  𝑠𝑜(3) × 𝑠𝑜(3)  2.  

 

The matrices 𝑣2 𝑅𝐴 and 𝑣4 𝑅𝐵  represents infinitesimal rotations superposed to RA and RB. 

We will need to endowour configuration space Q with a Riemannian metric, for arbitrary  

𝑈Φ  , 𝑉Φ ∈ 𝑇Φ𝑄we have: 

 

 
 𝑈Φ  , 𝑉Φ = 𝑢1 ⋅ 𝑣1 + 𝑢3 ⋅ 𝑣3 +

1

2
𝑡𝑟  𝑢2 𝑅𝐴 

𝑇𝑣2 𝑅𝐴 +
1

2
𝑡𝑟  𝑢4 𝑅𝐵 

𝑇𝑣4 𝑅𝐵   

 
 𝑈Φ  , 𝑉Φ = 𝑢1 ⋅ 𝑣1 + 𝑢2 ⋅ 𝑣2 + 𝑢3 ⋅ 𝑣3 + 𝑢4 ⋅ 𝑣4 3.  

 

To obtain the equation 3 we have used the following relations:𝑡𝑟 𝑅𝑇𝐷𝑅 = 𝑡𝑟 𝐷   , 𝑡𝑟 𝑢 𝑣  = −2 𝑢 ⋅ 𝑣 

Where ⋅ denote the scalar product. 
We will also need to define the Lie bracket: 

 

 
 𝑈Φ  , 𝑉Φ = 𝑈Φ𝑉Φ − 𝑉Φ𝑈Φ =  0 ,  𝑣2 × 𝑢2 𝑅𝐴

, 0 ,  𝑣4 × 𝑢4 𝑅𝐵
  4.  

 

With these additional structures that we have defined, we can determine a unique, torsion free, connection, 

associated to the Riemannian metric, and called the Levi-Civita connection. 

We note that a torsion free (or symmetric)connectionis a connection ∇verifying: 

 

 
∇𝑈Φ

𝑉Φ − ∇𝑉Φ
𝑈Φ =  𝑈Φ  , 𝑉Φ  5.  

 

For arbitrary tangent vector field UΦ, VΦ, WΦ, we have the following formula: 

 

 
2 ∇𝑈Φ

𝑉Φ  ,𝑊Φ =   𝑈Φ  , 𝑉Φ  ,𝑊Φ −   𝑈Φ  , 𝑊Φ  , 𝑉Φ −   𝑉Φ  ,𝑊Φ  , 𝑈Φ  6.  

 
2 ∇𝑈Φ

𝑉Φ  ,𝑊Φ =  𝑣2 × 𝑢2 ⋅ 𝑤2 +  𝑣2 × 𝑢2 ⋅ 𝑤4 7.  

 

Thus, the Levi-Civita connection is expressedby : 

 

 
∇𝑈Φ

𝑉Φ =
1

2
 𝑈Φ  , 𝑉Φ  8.  

 

From the expression of the connection we can see that∇𝑈Φ
𝑈Φ = 0, thus we can say that every curve whose 

tangent vector belongs to𝑇Φ𝑄 is a geodesic. 

 

3.    THE CURVATURE 

The Riemannian curvature is defined by: 

 

 
𝑅 𝑈Φ  , 𝑉Φ 𝑊Φ = ∇𝑉Φ

∇𝑈Φ
𝑊Φ − ∇𝑈Φ

∇𝑉Φ
𝑊Φ + ∇ 𝑈Φ  ,𝑉Φ  𝑊Φ  9.  

 
𝑅 𝑈Φ  , 𝑉Φ 𝑊Φ =

1

4
 𝑉Φ  ,  𝑈Φ  , 𝑊Φ  −

1

4
 𝑈Φ  ,  𝑉Φ  ,𝑊Φ  +

1

2
  𝑈Φ  , 𝑉Φ , 𝑊Φ  10.  

 

From the Jacobi identity: 
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  𝑈Φ  , 𝑉Φ ,𝑊Φ =  𝑈Φ  ,  𝑉Φ  , 𝑊Φ  −  𝑉Φ  ,  𝑈Φ  , 𝑊Φ   11.  

 
We obtain the expression of the Riemannian curvature: 

 

 
𝑅 𝑈Φ  , 𝑉Φ 𝑊Φ =

1

4
  𝑈Φ  , 𝑉Φ ,𝑊Φ  12.  

 
𝑅 𝑈Φ  , 𝑉Φ 𝑊Φ =

1

4
 0 ,  𝑤2 ×  𝑣2 × 𝑢2  𝑅𝐴

, 0 ,  𝑤4 ×  𝑣4 × 𝑢4  𝑅𝐵
  13.  

 

The non-vanishing Riemannian curvature tensor shows that the true nature of the configuration space is non-

Euclidean. 

 

4.      COROTATIONAL FORMULATION 

In the corotational method, we need to define amoving frame that is attached to the beam. For simplicity, this 

frame will be taken as the triad attached to the node A, defined by the rotation matrix RA. We will express the 

position vectors and the rotation matrices of the beam’s nodes in this local frame, to form a local 

configurationΦ𝑙 =  𝜑𝑙𝐴 , 𝑅𝑙𝐴 , 𝜑𝑙𝐵 , 𝑅𝑙𝐵 : 

 

 
𝜑𝑙𝐴 = 0     ,     𝑅𝑙𝐴 = 𝑅𝐴

𝑇𝑅𝐴 = 𝐼       ,     𝜑𝑙𝐵 = 𝑅𝐴
𝑇𝜑𝐵𝐴 −  

𝐿0

0
0
         ,      𝑅𝑙𝐵 = 𝑅𝐴

𝑇𝑅𝐵 14.  

 

Where the subscript l design a local configuration,L0the initial length of the beam and𝜑𝐵𝐴 = 𝜑𝐵 − 𝜑𝐴 . 

The derivative of Φlin the direction of the tangent vector𝑈Φ ∈ 𝑇Φ𝑄is given by : 

 

 

𝑈Φ 𝜑𝑙𝐴  = 0  ,   𝑈Φ 𝑅𝑙𝐴  = 0   ,    𝑈Φ 𝜑𝑙𝐵  = 𝑅𝐴
𝑇 𝑢31 + 𝜑𝐵𝐴 × 𝑢2  

 

𝑈Φ 𝑅𝑙𝐵  = 𝑅𝐴
𝑇𝑢42 𝑅𝐵 = 𝑅𝐴

𝑇𝑢42 𝑅𝐴𝑅𝐴
𝑇𝑅𝐵 = 𝑅𝐴

𝑇𝑢42
 𝑅𝑙𝐵  

15.  

 

Where𝑢𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗 . 

 

We can write: 

 

 
𝑈Φ Φ𝑙 =  0 , 0 , 𝑅𝐴

𝑇 𝑢31 + 𝜑𝐵𝐴 × 𝑢2  , 𝑅𝐴
𝑇𝑢42
 𝑅𝑙𝐵  16.  

 

We will also need the second derivative of Φl in the direction of the tangent vector 

𝑉Φ =  𝑣1 , 𝑣2 𝑅𝐴 , 𝑣3 , 𝑣4 𝑅𝐵  : 

 

 
𝑉Φ𝑈Φ 𝜑𝑙𝐵 = 𝑅𝐴

𝑇 𝑢31 × 𝑣2 + 𝑣31 × 𝑢2 − 𝑣2 ×  𝜑𝐵𝐴 × 𝑢2    

 
𝑉Φ𝑈Φ 𝑅𝑙𝐵  = 𝑅𝐴

𝑇 𝑢42 𝑣4 − 𝑣2 𝑢42  𝑅𝐵 = 𝑅𝐴
𝑇 𝑢42 × 𝑣2 + 𝑢42 𝑣42  𝑅𝐵  17.  

 

The tangent vector UΦ of a configuration Φ is characterized by the vectors u1 and u3, corresponding to a 

displacements of the beam nodes, and by the vectors u2 and u4, that can be seen as vectors of an infinitesimal 

rotation of the beam’s nodes. Weexpress lu  the local infinitesimal displacements and rotations of the beam’s 

nodes, in the moving frame attached to the beam that we have assumed to be centered at the node A and with 

axes defined by the triad RA, thus we have: 

 

 
𝑢𝑙1 = 0      ,     𝑢𝑙2 = 0         ,     𝑢𝑙3 = 𝑅𝐴

𝑇 𝑢31 + 𝜑𝐵𝐴 𝑢2             ,     𝑢𝑙4 = 𝑅𝐴
𝑇𝑢42 18.  

 

𝑢𝑙
𝑇 =  𝑢𝑙1

𝑇 𝑢𝑙2
𝑇 𝑢𝑙3

𝑇 𝑢𝑙4
𝑇   Representsthe local displacement and rotation vectors of the node A and B, 

expressed in the local moving frame. 

We can express now the matrix F connecting the infinitesimal, global and local, variables: 
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
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0ˆ

0000
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19.  

 

5.     THE VIRTUAL WORK AND THE TANGENT STIFFNESS MATRIX 

The virtual work, expressed in the local moving frame, is:  

 

 
𝛿𝑊 =  𝑞𝑖𝑙 − 𝑞𝑒𝑙  ⋅  𝑢𝑙  20.  

 

Where  𝑞𝑖𝑙
𝑇 =  𝑁𝐴

𝑇 𝑀𝐴
𝑇 𝑁𝐵

𝑇 𝑀𝐵
𝑇 and 𝑞𝑒𝑙

𝑇 =  𝑃𝐴
𝑇 𝑇𝐴

𝑇 𝑃𝐵
𝑇 𝑇𝐵

𝑇  represents the internal and external local 

generalized efforts, NA and PA the internal and external force vectors at node A, MA and TA the internal and 

external moment vectors at node A, and ul is generally called the virtual displacement vector. 

We note that at an equilibrium configuration we have𝑞𝑖𝑙 − 𝑞𝑒𝑙 = 0 ⟺  𝛿𝑊 = 0 

To develop the expression of the virtual work, we make use of the relation 𝑢𝑙 = 𝐹𝑢 to obtain: 

 

 
𝛿𝑊 =  𝑞𝑖𝑙 − 𝑞𝑒𝑙  ⋅  𝐹𝑢  

 
𝛿𝑊 =  𝑁𝐵 − 𝑃𝐵 ⋅  𝑅𝐴

𝑇 𝑢31 + 𝜑𝐵𝐴 𝑢2 +  𝑀𝐵 − 𝑇𝐵 ⋅  𝑅𝐴
𝑇𝑢42 21.  

 

From the last expression, we can see easily that we have the following relation: 

 

 
𝛿𝑊 = 𝑈Φ 𝑊 =  𝑄𝑖𝑙 − 𝑄𝑒𝑙  , 𝑈Φ Φ𝑙   22.  

 

Where  𝑄𝑖𝑙 =  𝑁𝐴  , 𝑀𝐴
 𝑅𝑙𝐴  , 𝑁𝐵  , 𝑀𝐵

 𝑅𝑙𝐵 and𝑄𝑒𝑙 =  𝑃𝐴  , 𝑇𝐴 𝑅𝑙𝐴  , 𝑃𝐵  , 𝑇𝐵
 𝑅𝑙𝐵 . 

𝑈Φ 𝑊 is the first derivative of the system energy W in the direction of UΦ. The second derivative of W will be 

expressed by : 

 

 
𝑉Φ𝑈Φ 𝑊 =  𝑉Φ 𝑄𝑖𝑙 − 𝑄𝑒𝑙   , 𝑈Φ Φ𝑙  +  𝑄𝑖𝑙 − 𝑄𝑒𝑙  , 𝑉Φ𝑈Φ Φ𝑙   23.  

 

We consider here only the case of conservative loading, then : 

 

 𝑉Φ𝑈Φ 𝑊 =  𝑉Φ 𝑄𝑖𝑙   , 𝑈Φ Φ𝑙               
𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  𝑝𝑎𝑟𝑡

+  𝑄 , 𝑉Φ𝑈Φ Φ𝑙             
𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐  𝑝𝑎𝑟𝑡

 
24.  

 

Where we have maked use of the notation𝑄 = 𝑄𝑖𝑙 − 𝑄𝑒𝑙 . 
The main idea of the corotational method is to make use of the local tangent (symmetric)stiffness matrix Kl, that 

we may already have in our finite element library. This matrix is defined by : 

 

 
𝛿𝑞𝑖𝑙 = 𝐾𝑙𝑣𝑙  25.  

Thus : 

 
 𝑉Φ 𝑄𝑖𝑙   , 𝑈Φ Φ𝑙  =  𝐾𝑙𝑣𝑙 ⋅ 𝑢𝑙 =  𝐾𝑚𝑣 ⋅ 𝑢 26.  

 
Where𝐾𝑚 = 𝐹𝑇𝐾𝑙𝐹is a symmetric matrix, representing the material part of the tangent stiffness. 

 

We calculate now the geometric part : 
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  𝑄 , 𝑉Φ𝑈Φ Φ𝑙  =  𝑁𝐵 − 𝑃𝐵 ⋅ 𝑅𝐴
𝑇 𝑢31 × 𝑣2 + 𝑣31 × 𝑢2 − 𝑣2 ×  𝜑𝐵𝐴 × 𝑢2   

+
1

2
𝑡𝑟    𝑀𝐵

 − 𝑇𝐵
  𝑅𝑙𝐵 

𝑇
𝑅𝐴

𝑇 𝑢42 × 𝑣2 + 𝑢42 𝑣42  𝑅𝐵  
27.  

 

Knowing that : 

 

 
𝑡𝑟    𝑀𝐵

 − 𝑇𝐵
  𝑅𝑙𝐵 

𝑇
𝑅𝐴

𝑇 𝑢42 × 𝑣2 + 𝑢42 𝑣42  𝑅𝐵 

= −𝑡𝑟  𝑅𝐴 𝑀𝐵 − 𝑇𝐵  𝑅𝐴
𝑇 𝑢42 × 𝑣2 + 𝑢42 𝑣42    

28.  

 

And if we decompose the matrix 𝑢42 𝑣42  into a symmetric and a skew-symmetric part : 

 

 
𝑢42 𝑣42 =

1

2
 𝑢42 𝑣42 + 𝑣42 𝑢42  +

1

2
 𝑢42 𝑣42 − 𝑣42 𝑢42    

 
𝑢42 𝑣42 =

1

2
 𝑢42 𝑣42 + 𝑣42 𝑢42  +

1

2
 𝑢42 × 𝑣42   29.  

 

Wewill have : 

 

  𝑄 , 𝑉Φ𝑈Φ Φ𝑙  =  𝑁𝐵 − 𝑃𝐵 ⋅ 𝑅𝐴
𝑇 𝑢31 × 𝑣2 + 𝑣31 × 𝑢2 − 𝑣2 ×  𝜑𝐵𝐴 × 𝑢2  + 

 𝑀𝐵 − 𝑇𝐵 ⋅ 𝑅𝐴
𝑇  𝑢42 × 𝑣2 +

1

2
𝑢42 × 𝑣42  

30.  

 

In the formula above, we have maked use of the relation 𝑡𝑟 𝐴𝐵 = 0,with A and B are respectively, a 

symmetric and a skew-symmetric matrix. 

If we compare the expression of geometric part obtained here with the one that we will have obtained by using a 

classical formulation of the corotational method, we will see that the term with 4242 vu  /2 will be missing in 

the classical formulation.  

 

The second derivativeof the system energy W will be given now by:  

 

 
𝑉Φ𝑈Φ 𝑊 =  𝐾𝑚𝑣 ⋅ 𝑢 +  𝐾𝑔𝑣 ⋅ 𝑢 31.  

 

Where Kg is the geometric part of the tangent stiffness matrix. 

We note that at an equilibrium configuration we have𝑞𝑖𝑙 − 𝑞𝑒𝑙 = 0, thus Kg=0, this shows that we recover the 

symmetry of the tangent stiffness at an equilibrium configuration, as demonstrated in [2] for a geometrically 

exact beam model. 

The expression of the second directional derivative of W can be written as the sum of a symmetric and a skew 

symmetric part : 

 

 
𝑉Φ 𝛿𝑊 = 𝑉Φ𝑈Φ 𝑊 =  𝐾𝑠𝑦𝑚 𝑣 ⋅ 𝑢 +  𝐾𝑠𝑘𝑒𝑣 ⋅ 𝑢 32.  

 

The skew symmetric part is definedby : 

 

 
 𝐾𝑠𝑘𝑒𝑣 ⋅ 𝑢 =

1

2
 𝑉Φ𝑈Φ − 𝑈Φ𝑉Φ  𝑊 =

1

2
 𝑄 ,  𝑉Φ𝑈Φ − 𝑈Φ𝑉Φ  Φ𝑙   33.  

 

We will need to calculate  𝑉Φ𝑈Φ − 𝑈Φ𝑉Φ  Φ𝑙 : 
 

  𝑉Φ𝑈Φ − 𝑈Φ𝑉Φ  𝜑𝑙𝐵  = 𝑅𝐴
𝑇 𝑢2 ×  𝜑𝐵𝐴 × 𝑣2 − 𝑣2 ×  𝜑𝐵𝐴 × 𝑢2   

= 𝑅𝐴
𝑇 𝜑𝐵𝐴 ×  𝑢2 × 𝑣2   

34.  

 

  𝑉Φ𝑈Φ − 𝑈Φ𝑉Φ  𝑅𝑙𝐵  = 𝑅𝐴
𝑇 𝑢42 𝑣4 − 𝑣2 𝑢42 − 𝑣42 𝑢4 + 𝑢2 𝑣42  𝑅𝐵 

= 𝑅𝐴
𝑇 𝑢4 × 𝑣4 − 𝑢2 × 𝑣2  𝑅𝐵 

35.  
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= 𝑅𝐴
𝑇𝑤 𝑅𝑙𝐵 =  𝑅𝐴

𝑇𝑤 𝑅𝑙𝐵
 

 

Where𝑤 = 𝑢4 × 𝑣4 − 𝑢2 × 𝑣2 

Thus : 

 

 
 𝐾𝑠𝑘𝑒𝑣 ⋅ 𝑢 =

1

2
 𝑁𝐵 − 𝑃𝐵 ⋅ 𝑅𝐴

𝑇 𝜑𝐵𝐴 ×  𝑢2 × 𝑣2  +
1

2
 𝑀𝐵 − 𝑇𝐵 ⋅ 𝑅𝐴

𝑇𝑤 

=  𝑄 , ∇𝑉Φ
𝑈Φ Φ𝑙   

= ∇𝑉Φ
𝑈Φ 𝑊  

36.  

 

If we perform the covariant derivative of  𝛿𝑊weobtain : 

 

  ∇𝑉Φ
𝑄 , 𝑈Φ Φ𝑙  = 𝑉Φ  𝑄 , 𝑈Φ Φ𝑙   −  𝑄 , ∇𝑉Φ

𝑈Φ Φ𝑙   

= 𝑉Φ 𝛿𝑊 − ∇𝑉Φ
𝑈Φ 𝑊  

=  𝐾𝑠𝑦𝑚 𝑣 ⋅ 𝑢 

37.  

 

The tangent stiffness matrix obtained is symmetric, even for a configuration away from equilibrium, and 

corresponds to the symmetric part of the matrix obtained from the directional derivative of the virtual work. 

 

6.     CONCLUSION  

In the classical formulation of the corotational method,the tangent stiffness matrixKtis obtained by performing a 

directional derivative of the virtual work, instead of a covariant derivative. As it was pointed in [3], this matrix 

will be non-symmetric. Thisformulation is equivalent to take ∇𝑉Φ
𝑈Φ = 0 in our calculation, which defines a 

non-symmetric connection, and as proven in [4], this will give arise to a non-symmetric tangent stiffness matrix. 

In the formulation proposed by Crisfield [3], the equilibrium equations are differentiated to obtain their 

linearized form.A non-symmetric geometric stiffness matrix is then derived, and as we have already shown, it 

will be different from the one obtained in this paper by performing a directional derivative of the virtual work, 

to obtain then the symmetric tangent stiffness matrix, we need to add to the classical formulation the missing 

terms and then symmetrize the result. 
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