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ABSTRACT 

The paper compares four coefficients that can be used to summarize inter-rater agreement on a nominal scale. The 

coefficients are Cohen's kappa and three coefficients that were originally proposed by the Italian statistician Corrado 

Gini. All four coefficients have zero value if the two nominal variables are statistically independent, and value unity 

if there is perfect agreement. The coefficients are compared both analytically and empirically. An ordering between 

the four coefficients is formally proved. It turns out that Cohen's kappa is a lower bound of the other coefficients. 

Moreover, it is shown that the point estimates of Cohen's kappa and the two smallest of Gini's coefficients are very 

similar for real data. We conclude that these three coefficients lead to the same conclusions about the degree of 

inter-rater agreement in practice. 
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1.   INTRODUCTION 
In behavioral, health and engineering sciences it is frequently required that an observer assigns a group of objects 

(individuals) to a set of nominal (unordered, mutually exclusive) categories. The observer or rater may be a 

psychologist that classifies subjects on personality type, a clinician that classifies subjects on mental disorders, or an 

expert that classifies production faults [14,15,31,56]. Since there is often no golden standard researchers usually 

require that the rating task is performed by at least two raters. The agreement between the ratings of the two 

observers can then be used as an indicator of the quality of the category definitions and the raters' ability to apply 

them. Instead of studying and understanding the observed patterns of agreement and disagreement, researchers are 

often only interested in a single number that summarizes the degree of agreement. Various coefficients have been 

proposed that can be used to summarize the agreement between two raters on a nominal scale [42,47,56]. The most 

widely used coefficient is Cohen's kappa [5,9,22,45,46]. The popularity of kappa has led to the development of 

many extensions, including, kappas for three or more raters [11,48], kappas for groups of raters [38,39] and kappas 

for ordinal categories [49,50,51,52,53,54].  

Cohen's kappa was originally proposed on an ad hoc basis as a descriptive statistic indicating degree of beyond-

chance agreement [8,34,56]. Kraemer [26] showed that Cohen's kappa for two categories satisfies the classical 

definition of reliability. Although proposed as the proportion of agreement beyond chance [9], the value of kappa for 

three or more categories is generally considered to be uninterpretable, because no single coefficient is sufficient to 

completely and accurately convey information on agreement when there are more than two categories [27]. 

Furthermore, a general problem with agreement coefficients and other association coefficients is that often only the 

extreme values (maximum and zero values) have a clear interpretation [31].  

Despite the difficulties with its interpretation, Cohen's kappa continues to be the most popular coefficient for 

summarizing inter-rater agreement on a nominal scale [22,56]. A main reason for kappa's popularity appears to be 

that its extreme values have a clear interpretation. Kappa has zero value when the two nominal variables (raters) are 

statistically independent and value unity if there is perfect agreement [9]. However, these properties are not unique 

to Cohen's kappa. Indeed, several authors have proposed agreement coefficients that have identical properties and it 

is therefore a moot point which coefficient is the best indicator of agreement of the ratings given these criteria.  

In this paper we compare Cohen's kappa to three other agreement coefficients that have been proposed in the 

literature. It turns out that all three agreement coefficients were originally introduced by the Italian statistician 

Corrado Gini [16,17]. Gini's coefficients have been rediscovered by other authors [8,9,23,34]. The agreement 

coefficients are compared both analytically and empirically, and it is investigated whether the coefficients may lead 

to different conclusions in practice. The paper is organized as follows. Cohen's kappa is introduced in the next 

section. The three agreement coefficients originally proposed by Gini [16,17] are introduced in Section 3. An 

ordering between the four coefficients that is frequently observed in practice is formally proved in Section 4. Section 

5 contains a discussion. 
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2.   COHEN’S KAPPA 
The literature contains a vast amount of coefficients for summarizing association or agreement between two nominal 

scale variables [12,19,35,40]. This paper is limited to coefficients for two nominal variables with c identical 

categories [8,23,46,47,56]. 

Suppose that two raters each independently classify the same set of objects (individuals, observations) into the same 

set of c categories that are defined in advance. For a population of n objects, let     for            denote the 

proportion of objects classified into category i by the first rater and into category j by the second rater. The square 

table {   } is also called an agreement table. Row and column totals of {   } are denoted by 

    ∑   

 

   

                   ∑    

 

   

 

and will be called the marginal totals of {   }. The cell probabilities     on the main diagonal of {   } indicate how 

many objects were put in the same categories by both raters. The square contingency table {   } can be seen as a 

cross-classification of two nominal variables with identical categories. The agreement coefficients discussed in this 

paper can also be used for summarizing agreement if we have n observers of one type paired with n observers of a 

second type, and each of the 2n observers assigns an object to one of c categories. 

In the remainder of the paper the symbol ∑    is used as short notation for ∑    
 
   . Cohen's kappa is defined as  

 

   
∑    ∑      

  ∑      

 (1) 

where ∑    and ∑       are, respectively, the proportions of observed and expected agreement. The numerator 

∑    ∑       is equal to zero if the ratings are statistically independent. Division by the denominator   
∑        sets the maximum value of kappa at unity.  

Assuming a multinominal sampling model with the total numbers of objects n fixed, the maximum likelihood 

estimate of the cell probability     is given by  ̂        , where     is the observed frequency. The maximum 

likelihood estimate  ̂ of   in (1) is obtained by replacing the cell probabilities     by the  ̂   [7]. An example of an 

observed agreement table {   } is presented in Table 1. The data in Table 1 are taken from Cohen [9].  In this study, 

200 sets of fathers and mothers were asked to identify which of three personality descriptions (Types 1, 2 or 3) best 

describes their oldest child. Table 1 is the cross classification of the fathers description and mothers description of 

the oldest child. For the data in Table 1 we have 

∑ ̂                        

and 

∑ ̂   ̂                                           

and the estimate  ̂                            , which indicates a moderate degree of agreement [28].  

 

Table 1: Personality descriptions of oldest child by 200 sets of fathers and mothers [9]. 

  Mother   

Father Type 1 Type 2 Type 3 Totals 

Type 1 88 10 2 100 

Type 2 14 40 6 60 

Type 3 18 10 12 40 

Totals 120 60 20 200 

 

The maximum value of ∑    is restrained by the marginal totals in the sense that the value of     cannot exceed the 

minimum of      and     [8,9,34]. For fixed marginal totals     and    , the maximum value of  ∑     is given by 

   (∑   )  ∑   {       }  

Replacing the 1 by     ∑     in definition (1) we obtain  

 

    
∑    ∑      

∑   {       }  ∑      

  (2) 

This coefficient may be interpreted as kappa/max(kappa):    is equal to Cohen's kappa divided by the maximum 

value of kappa given the marginal totals [8,9,13,34].  The value of    is 1 when all objects that are assigned to 

category i by the first rater, are also assigned to category i by the second rater, or vice versa. Similar to Cohen's 
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kappa, the value of    in (2) is zero when the two nominal variables are statistically independent. For the data in 

Table 1 we have the point estimate  ̂       . 

The special case of the coefficient    for     categories [43,44] is discussed in Johnson [24] and Loevinger 

[29,30]. The latter author calls it coefficient H. Loevinger's H is a central coefficient in Mokken scale analysis, a 

methodology that can be used to select a subset of binary test items that are sensitive to the same underlying 

dimension [36]. Goodman and Kruskal [19,20] note that this special case was independently proposed in Benini [6] 

and Jordan [25]. Furthermore, in the case of positive agreement the special case of kappa/max(kappa) is equivalent 

to a coefficient discussed in Cole [10] and Zysno [57]. Moreover, for     categories kappa/max(kappa) is 

equivalent to phi/max(phi) [44]. A detailed review of the phi/max(phi) literature is presented in Davenport and El-

Sanhurry [13]. 

 

3.   AGREEMENT COEFFICIENTS BY GINI 

From 1914 to 1916 the Italian statistician Corrado Gini published several papers in which he proposed a great 

variety of association coefficients. He examined in detail many distinctions between relationships within a bivariate 

distribution and proposed coefficients of association for the different cases, including several coefficients for 

agreement. Gini is best known for the Gini [18] coefficient, which is a coefficient of statistical dispersion that can be 

used as a coefficient of inequality of income or wealth. An exposition of the Gini material in English can be found in 

Weida [55]. The Gini material is also briefly reviewed in Goodman and Kruskal [19,20]. Goodman and Kruskal [19, 

p. 137] note that they, and we quote, ``have not found in Gini's papers operational interpretations of his proposed 

coefficients. They all seem to be of a formal nature in which consideration of absolute or quadratic differences, 

followed by averaging, is taken as reasonable without argument. Special attention is paid to denominators so as to 

make the indices range between 0 and 1 within appropriate limitations for variation in the joint distribution.'' 

Goodman and Kruskal [19, p. 137] report that Gini [17] proposed the coefficient 

 

    
∑    ∑      

  ∑       
 

 
∑|       |

  (3) 

The numerator of    in (3) is identical to the numerators of Cohen's kappa and kappa/max(kappa). The denominator 

of   is quite similar to that of kappa, although on first sight it is unclear why it is defined like this. However, the 

following theorem shows that   is in fact equivalent to kappa/max(kappa). 

 

Theorem 1.      . 

Proof: Since    and    have the same numerator it must be shown that the two denominators are equivalent. We 

have the identities 

 
 

 
(∑   {       }  ∑   {       })  

 

 
(∑    ∑   )     (4) 

and 

 
 

 
(∑   {       }  ∑   {       })  

 

 
∑|       |  (5) 

Subtracting (5) from (4) we obtain the identity 

   
 

 
∑|       |  ∑   {       }   

Hence the denominators of    and    are equivalent.   

 

Goodman and Kruskal [19, p. 137] report that Gini [16] proposed the coefficient 

 

    
∑    ∑      

√   ∑   
     ∑   

  
  (6) 

Coefficient    was independently proposed by Janson and Vegelius [23]. The statistic is a generalization of the phi 

coefficient for 2×2 tables [43,44] to the case of c nominal categories. Thus for     categories    is similar to the 

Pearson correlation coefficient in its interpretation. Janson and Vegelius [23] do not provide an operational 

interpretation of    for     categories. Similar to Cohen's kappa, the value of    in (6) is unity when perfect 

agreement between the two raters occurs, and zero when agreement is equal to that expected under independence. 

For the data in Table 1 we have the point estimate  ̂       . 

Weida[55] reports that Gini also proposed the coefficient 
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∑    ∑      

   

 
∑   

   

 
∑   

    

Coefficient    was independently proposed by Popping [34, p.76]. The coefficient is a generalization of a 

coefficient by Maxwell and Pilliner [32] for the case of     categories. Popping [34] does not provide a physical 

meaning of   , but showed that both    and   satisfy a whole range of desirable properties. Again, the value of    is 

unity when there is perfect agreement between the two raters, and zero when agreement is equal to that expected 

under independence. For the data in Table 1 we have the estimate  ̂       . 
 

4.   INEQUALITIES 

In the previous section we observed the ordering  ̂   ̂   ̂   ̂    for the data in Table 1. It turns out that this 

ordering of the values of the agreement coefficients is observed quite frequently in practice (see Table 2 in Section 

5). Theorem 2 below shows that the triple inequality |  |  |  |  |  |  | | holds, where the symbol | | denotes 

the absolute value of the coefficient  .  

The inequality |  |  | | is mentioned in Janson and Vegelius [23, p. 265] but no formal proof is provided. For 

    categories the inequality |  |  | | was proved in Cohen [9] and Warrens [41]. For     categories the 

inequality |  |  | | was proved in Warrens [41]. 

 

Theorem 2. |  |  |  |  |  |  | |  
Proof: We first prove the left inequality, then the middle, and finally the right inequality. 

We have the identity 

  ∑   
  ∑    ∑   

  ∑            

Hence, using the positive numbers 

   √                                      √           

in the Cauchy-Schwarz inequality ([1, p. 11] or [33, p. 20]) 

∑  
 ∑  

  (∑    )
 

  

yields 

 √(  ∑   
 ) (  ∑   

 )  ∑√                      (7) 

Furthermore, since the smallest of two real numbers never exceeds the geometric mean of the numbers, we have 

 √                        {                     }  (8) 

Summing (8) over all i, we obtain 

 
∑√                     ∑   {                     }

 ∑   {       }  ∑        
(9) 

Combining (7) and (9), we obtain 

√(  ∑   
 ) (  ∑   

 )  ∑   {       }  ∑        

Hence, the denominator of    never exceeds the denominator of   , and we conclude that |  |  |  |. 
Next, inequality |  |  |  | if and only if 

 (  ∑   
 ) (  ∑   

 )  (  
 

 
∑   

  
 

 
∑   

 )
 

  (10) 

Define 

    ∑   
                   ∑   

   

Then, inequality (10) can be written as 

   
      

 
                   

      

 
  

Hence, the denominator of    never exceeds the denominator of   , and we conclude that |  |  |  |.  
Finally, from the inequality          

    it follows that 

 
   

     
 

 
         (11) 

Summing (11) over all i, we obtain 
 

 
∑   

  
 

 
∑   

  ∑       
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which is equal to 

  
 

 
∑   

  
 

 
∑   

    ∑        

Hence, the denominator of    never exceeds the denominator of  , and we conclude that |  |  | |. This completes 

the proof of the theorem.   

 

 

Table 2: Point estimates of the coefficients   ,   ,    and   for 34 agreement tables from the literature.  

The values are sorted on the number of categories (# cat) and the value of  ̂ . 

Source of data # cat  ̂   ̂   ̂   ̂ 

[37, p. 307] 3 0.756 0.730 0.730 0.730 

[9] 3 0.592 0.501 0.500 0.492 

[2, p. 32] 3 0.445 0.369 0.369 0.363 

[7, p. 397] 3 0.405 0.364 0.364 0.362 

[7, p. 288] 3 0.320 0.244 0.244 0.236 

[37, p. 301] 3 0.203 0.174 0.173 0.171 

[3, p. 271] 3 0.243 0.158 0.158 0.140 

[2, p. 360] 4 0.950 0.935 0.935 0.935 

[2, p. 26] 4 0.814 0.738 0.737 0.735 

[3, p. 270] 4 0.879 0.800 0.800 0.798 

[4]  4 0.785 0.744 0.744 0.744 

[3, p. 269] 4 0.761 0.674 0.674 0.668 

[21, p. 170] 4 0.626 0.583 0.583 0.582 

[37, p. 303] 4 0.649 0.552 0.552 0.545 

[2, p. 376] 4 0.607 0.595 0.595 0.595 

[3, p. 260] 4 0.792 0.536 0.532 0.493 

[21, p. 170] 4 0.446 0.433 0.433 0.433 

[4]  4 0.646 0.407 0.406 0.368 

[2, p. 377] 4 0.480 0.392 0.392 0.385 

[28]  4 0.408 0.308 0.308 0.297 

[3, p. 272] 4 0.256 0.232 0.232 0.231 

[21, p. 170] 4 0.332 0.225 0.224 0.208 

[3, p. 273] 4 0.301 0.204 0.204 0.190 

[2, p. 32] 4 0.147 0.131 0.131 0.129 

[37, p. 303] 4 0.174 0.116 0.116 0.110 

[3, p. 270] 4 0.289 0.117 0.109 0.077 

[37, p. 272] 5 0.926 0.913 0.913 0.913 

[7, p. 399] 5 0.901 0.861 0.861 0.860 

[2, p. 368] 5 0.795 0.540 0.535 0.498 

[7, p. 100] 5 0.229 0.216 0.216 0.215 

[2, p. 376] 5 0.196 0.183 0.183 0.182 

[37, p. 302] 6 0.564 0.540 0.540 0.539 

[37, p. 277] 7 0.152 0.142 0.142 0.142 

[37, p. 274] 8 0.608 0.418 0.417 0.393 

 

5.   DISCUSSION 
In this paper we compared four coefficients of inter-rater agreement for nominal categories. The coefficients are 

Cohen's kappa and three coefficients (denoted by   ,    and   ) that can be traced back to publications by the 

Italian statistician Corrado Gini. It was shown that    is equivalent to kappa/max(kappa). All four agreement 

coefficients have zero value if the two nominal variables are statistically independent, and value unity if there is 

perfect agreement. However, for all four coefficients only the extreme values (maximum and zero values) have a 

clear interpretation. The meaning of the values between 1 and 0 is generally considered uninterpretable, because no 

single coefficient is sufficient to completely and accurately convey information on agreement when there are three 

or more categories [27]. Nevertheless, in practice most agreement studies are simply summarized by reporting a 

single value. The most popular agreement coefficient is Cohen's kappa [5,22,56]. Since there is no apparent reason 

for preferring kappa over Gini's coefficients, one may wonder whether the different coefficients also lead to different 

conclusions about the degree of agreement.  
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Table 2 presents the point estimates of   ,   ,    and   for 34 agreement tables from the literature. Close inspection 

reveals that the estimates of    and    are indistinguishable for most of the data entries. Moreover, the estimates of 

 ,    and    are very similar for all 34 data entries of Table 2. We conclude that the use of   ,    and   will lead to 

the same conclusions about the degree of inter-rater agreement in practice. Only the use of coefficient     

kappa/max(kappa) may lead to other conclusions about the data.    is commonly interpreted as the proportion of 

marginally permitted agreement beyond chance, whereas Cohen's  ,   and    can be interpreted as the proportion 

of agreement beyond chance. For each 34 data entries of Table 2 we observe the ordering             . 

The triple inequality |  |  |  |  |  |  | | was proved in Section 4. 
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