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ABSTRACT 

In this paper, we present a new method for calculating the singular values bounds of an interval matrix.  we regard 

singular values as the the largest eigenvalues of the Jordan-Wielandt matrix. Using the property of eigenvalue bound 

for interval matrix, we give a method about singular values bounds. This method can analyse stability of systems in 

control fields extensively. An numerical example illustrating the applicability and effectiveness of the new method 

is also provided.  
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1.  INTRODUCTION 

Many real-life problems suffer from diverse uncertainties, as a result of inaccuracy of measurements, errors in 

manufacture, etc. Therefore, the concept of uncertainty is becoming more and more important. Probability theory is 

the traditional approach to handling uncertainty. This approach requires sufficient statistical data to justify the 

assumed statistical distributions. Analysis agree that, given sufficient statistical data, the probability theory describes 

the stochastic uncertainty well. However, probabilistic modeling cannot handle situations with incomplete or little 

information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting. 

In the mid sixties, the interval analysis was proposed [1]. It turns out to be a very powerful technique to study the 

variations of a system and to understand its uncertainty. One of the most important properties of this approach is the 

fact that it is possible to certify the results of all the states of a system. 

The problem of computing the singular value bounds of interval matrices has been studied since the nineties. Deif’s 

method [2] produces exact singular value sets, but only under some assumption that are generally difficult to verify. 

Ahn & Chen [3] presented a method for calculating the largest possible singular value. It is a slight modification of 

[4] and time complexity is exponential (
12m n 

 iterations). They also proposed a lower bound for the smallest 

possible singular value by means of interval matrix inversion. To get an outer approximation of the singular value 

set of A, we can apply the eigenvalue bound methods of the symmetric interval matrix 

0

0T

A

A

 
 
 

. 

The problem of computing the eigenvalue bounds of interval matrices has many effect results. Deif [5] firstly 

considered the interval eigenvalue problem. Qiu [6] dealed with the standard interval eigenvalue problem using the 

vertex solution theorem and the parameter decomposition solution theorem. Zhan [7] presented the range of the 

smallest and largest eigenvalues of real symmetric interval matrices. Leng [8] obtained the eigenvalue bounds of the 

original interval eigenvalue problem based on the matrix perturbation. This method is very simple and unconditional 

but the bounds are not very sharp. Leng [9] presented a new method with two algorithms for computing bounds to 

real eigenvalues of real-interval matrices.  

This paper is structured as follows. In Section 2, we provide the mainresults of singular value bound estimate for 

symmetric interval matrix and the proof. Then, a numerical example for demonstration effect of our method is given 

in Section 3. 

 

2.    BOUND OF INTERVAL SINGULAR VALUE 

The singular values of A  are identical with the largest eigenvalues of the Jordan-Wielandt matrix, i.e  

 = ( ), 1,2, ,T

i i A A i n                                                                              (1) 

here 
IA A , interval matrix 

IA  is defined as  

                                  = [ , ] ={ ; }I n nA A A A R A A A                                                                     (2) 
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where , ,n nA A R A A  , are given symmetric matrices. It is important to note that not every matrix in 
IA  is 

symmetric. Here we only consider the symmetric matrices, and the nonsymmetric parts are considered in our future 

paper. By  

=        =
2 2

ij ijc c

ij

a aA A
A for a

  

=        =
2 2

ij ij

ij

a aA A
A for a


   

we denote the midpoint and the radius of 
IA  respectively.  

  is the singular value of the uncertain-but-bounded matrix A. For a given real symmetric interval matrix 
IA , find 

an singular value interval 
I  defined by  

= [ , ] = ( ),     = [ , ]I I I

i i i i        

such that it encloses all possible singular values  , and also it should be as small as possible.  

Since the singular values are now not only the points but also the intervals. We will give some results for bounds 

estimate of singular values, at first we review some knowledge about the Weyl theorem [10].  
 

Theorem 2.1 (Weyl Theorem) Let , n nA B R   be symmetric matrices with eigenvalues 
1 2 n      and  

1 2 n     , then 

2
, ( 1,2, , )i i A B i n                                                         (3) 

Now we will deduce the following important conclusion according Weyl theorem. 
 

Theorem 2.2  Let , n nA B R   be symmetric matrices with singular value 
1 2 n      and  

1 2 n     , respectively. Then one has  

2
, ( 1,2, , )i i A B i n                                                         (4) 

 Proof. Let =B A E , then 
 0 0 0

0 0 0T T T

B A E

B A E

     
      

     

                       

Let the singular values of E  are 1 0n    , the eigenvalues of the three real symmetric matrices 

0

0T

B

B

 
 
 

, 0

0T

A

A

 
 
 

 and 0

0T

E

E

 
 
 

 are  

1 1n n            

1 1n n            

and                                    
1 1n n            

Let singular value decomposition for A  is 
TA U V  , here U  and V are unitary matrices, 

1( , , )ndiag     , it is not difficulty to obtain 

0 0

0 0

T

T

A
U V

A

   
   

   

   

Where                              
1 1

2 2

1 1

2 2

U U

U

V V

 
 
 
 

 
 


 

According Weyl theorem, we have 

2

0
, 1,2, ,

( ) 0
i i T

B A
i n

B A
 

 
    

 


                                                        (5) 

Whereas                            
1 2

2

0

0T

E
E

E


 
  

 

                                                                                                     (6) 

And                                   
2 2

2 2

0 0
,

( ) 0 0T T

B A E
A B E

B A E

   
      

   

                                                 (7) 

Combining (5), (6) and (7), then 

2
, ( 1,2, , ).i i A B i n        
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The above theorem demonstrates that singular value has good stability property, this is why singular value 

decomposition has wide applications. Now we will give bounds estimate theorem for singular values. 
 

Theorem 2.3 Let 
n nA R   be symmetric matrices in 

IA , ,cA A  are the midpoint and the radius of 
IA  

respectively. Let the singular values of A  are 1 n   , the singular values of 
cA  are 

1 n    and  the 

spectrum radius of A  is  , then  

, ( 1,2, , ).i i i n                                                                                      (8) 

Proof. From the definition of the interval matrix, 
IA A  can be expressed as 

0 00

0 00

c

T TcT

A AA

A AA





    
     

    

  

here [ , ]A A A    . From Weyl theorem, we can obtain 

       

2

0

0
,( 1,2,..., )

Ti i

A
i n

A


 



 
 
 

                                                                  (9) 

We know                                     
2

2

0

0
( )

T

A
A A

A



 



 
   
 

                                                                      (10) 

where  A   is the spectrum radius of A . Because
 

A A    , so we have 

   A A                                                                                                 (11) 

Combining (9), (10) and (11), then 

, ( 1,2, , ).i i i n        

From Theorem 2.3, we can obtain 

, ( 1,2, , )i i i i n            

Take i i    , , ( 1,2, , )i i i n       . We have obtained the singular values bounds for real 

symmetric interval matrices. 
 

3.    NUMERICAL RESULTS 
We consider a spring-mass system with five degrees of freedom as shown in Figure 1. Masses are denoted by 

1 2 3 4 5, , , ,m m m m m  and springs are denoted by 1 2 3 4 5, , , , k k k k k  and 6k , respectively. 

 
Figure 1 spring-mass system 

Let masses of the spring are the unit masses, the stiffness parameters are as follows: 

   1 2000,2020k N m
    
   2 1800,1830k N m

    
   3 1600,1630k N m

 

   4 1400,1420k N m
    
   5 1200,1230k N m

     
   6 1000,1030k N m  

According to the relationship of the stiffness matrix elements and stiffness parameters, we can obtain stiffness 

matrix interval as follows: 

  

   
     

     
     

   

3800,3850 1800,1830 0 0 0

1800,1830 3400,3460 1600,1630 0 0

0 1600,1630 3000,3050 1400,1420 0

0 0 1400,1420 2600,1650 1200,1230

0 0 0 1200,1230 2200,2260

IK

 
 
  
   
 

  
  

 

The nominal stiffness matrix 
cK  and the deviation radius matrix of the stiffness matrix are given respectively by  
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3825 1815 0 0 0

1815 3430 1615 0 0

= 0 1615 3025 1410 0

0 0 1410 2625 1215

0 0 0 1215 2230

cK

 
 
 
 
  
 

  
  

 

and  

25 15 0 0 0

15 30 15 0 0

= 0 15 25 10 0

0 0 10 25 15

0 0 0 15 30

K

 
 
 
 
 
 
  

 

The spetrum radius of K  is 

  50.6683K  
 

Let the lower and upper bounds of singular value by using Theorem 2.3 be denoted by i  and i , for i=1,2,3,4,5, 

respectively. The results are summarized in Table I. For every matrix in 
IK , One can test that the singular value 

must be in the interval [ i , i ]. It shows that the present method can produce the correct singular value bounds. 

Table 1.  Lower and upper bounds of singular value 
  

i  i  

1

I  
337.4255 438.7621 

2

I  
1397.2881 1498.6247 

3

I  
2839.5425 2940.8791 

4

I  
4325.5137 4426.8503 

5

I  
5981.8885 6083.2251 
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